莫比乌斯函数\(\mu(n)\),当\(n=1\)时,\(\mu(n)=1\);当\(n>1\)时,设\(n\)的唯一分解式为\(n=p_1^{c_1}\cdots p_k^{c_k}\),则\(\mu(n)\)定义为
\(\mu(n)= \begin{cases} (-1)^k,c_1=c_2=\cdots=c_k=1 \\ 0, \exists\, c_i>1(1\leq i\leq k)\\ \end{cases}\)
观察这两个等式
\(\qquad\qquad\qquad\begin{aligned} n&=\sum\limits_{d|n}\varphi(d)=\sum\limits_{d|n}\varphi\left(\dfrac{n}{d}\right)\\ \varphi(n)&=\sum\limits_{d|n}\mu(d)\dfrac{n}{d}=\sum\limits_{d|n}\mu\left(\dfrac{n}{d}\right)d\\ \end{aligned}\)
考虑将其推广至一般情况
对于数论函数\(f(n),g(n)\),若
\(\qquad\qquad \qquad\qquad f(n)=\sum\limits_{d|n}g(d)=\sum\limits_{d|n}g\left(\dfrac{n}{d}\right)\)
则称\(f(n)\)为\(g(n)\)的莫比乌斯变换,而\(g(n)\)为\(f(n)\)的莫比乌斯逆变换。
若有两个数论函数\(f(n),g(n)\)满足
\(\qquad \qquad \qquad \qquad f(n)=\sum\limits_{d|n}g(d)\qquad \qquad (1)\)
则有
\(\qquad \qquad \qquad \qquad g(n)=\sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right) \qquad \qquad (2)\)
反过来,若满足\((2)\),则\((1)\)也成立。
证明: 若\(f(n),g(n)\)满足\((1)\),则
\(\qquad \qquad \begin{aligned} \sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right)&=\sum\limits_{d|n}\mu(d)\sum\limits_{d'|\frac{n}{d}}g(d')\\ &=\sum\limits_{dd'|n}\mu(d)g(d')\\ &=\sum\limits_{d'|n}\sum\limits_{d|\frac{n}{d'}}\mu(d)g(d')\\ &=\sum\limits_{d'|n}g(d')\sum\limits_{d|\frac{n}{d'}}\mu(d)\\ &=g(n)\\ \end{aligned}\)
\(\qquad\)反过来,设\(f(n),g(n)\)满足\((2)\),同法可证
\(\qquad \qquad \begin{aligned} \sum\limits_{d|n}g(d)&=\sum\limits_{d|n}g\left(\dfrac{n}{d}\right)\\ &=\sum\limits_{d|n}\sum\limits_{d'|\frac{n}{d}}\mu\left(\dfrac{n}{dd'}\right)f(d')\\ &=\sum\limits_{dd'|n}\mu\left(\dfrac{n}{dd'}\right)f(d')\\ &=\sum\limits_{d'|n}f(d')\sum\limits_{d|\frac{n}{d'}}\mu\left(\dfrac{n}{dd'}\right)\\ &=f(n)\\ \end{aligned}\)
原文:https://www.cnblogs.com/yydyz/p/10447805.html