首页 > 其他 > 详细

poj3335

时间:2019-02-28 19:44:31      阅读:229      评论:0      收藏:0      [点我收藏+]

 

半平面交&多边形内核。因为没注意了点的情况自闭了。

https://blog.csdn.net/qq_40861916/article/details/83541403

这个说的贼好。

多边形内核就是多边形内部的一块区域/一个点,能看到多边形的任何地方。

怎么求呢。

首先每条边要逆时针。

然后我们对所有的边按照与 +x轴的逆时针夹角进行排序。从小到大。

这之后我们每次用双端队列维护已经求出的多边形。

每加入一条新边的话,我们check一下

技术分享图片

这个图说的太好了!话说这个图的blog我在上面放了链接不算盗用叭。。。

然后就没了。。

技术分享图片
  1 #include <iostream>
  2 #include <cmath>
  3 #include <algorithm>
  4 #include <cstdio>
  5 #include <vector>
  6 #include <deque>
  7 #define rep(x) for(int i=0;i<x;i++)
  8 using namespace std;
  9 typedef double db;
 10 const db eps=1e-8;
 11 const db pi=acos(-1);
 12 int sign(db k){
 13     if (k>eps) return 1; else if (k<-eps) return -1; return 0;
 14 }
 15 int cmp(db k1,db k2){return sign(k1-k2);}
 16 int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
 17 struct point{
 18     db x,y;
 19     point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
 20     point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
 21     point operator * (db k1) const{return (point){x*k1,y*k1};}
 22     point operator / (db k1) const{return (point){x/k1,y/k1};}
 23     int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
 24     // 逆时针旋转
 25     point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
 26     point turn90(){return (point){-y,x};}
 27     bool operator < (const point k1) const{
 28         int a=cmp(x,k1.x);
 29         if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
 30     }
 31     db abs(){return sqrt(x*x+y*y);}
 32     db abs2(){return x*x+y*y;}
 33     db dis(point k1){return ((*this)-k1).abs();}
 34     point unit(){db w=abs(); return (point){x/w,y/w};}
 35     void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
 36     void print(){printf("%.11lf %.11lf\n",x,y);}
 37     db getw(){return atan2(y,x);}
 38     point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
 39     int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
 40 };
 41 int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
 42 db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
 43 db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
 44 db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));}
 45 // -pi -> pi
 46 int compareangle (point k1,point k2){
 47     return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>0);
 48 }
 49 point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影
 50     point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2());
 51 }
 52 point reflect(point k1,point k2,point q){return proj(k1,k2,q)*2-q;}
 53 int clockwise(point k1,point k2,point k3){// k1 k2 k3 逆时针 1 顺时针 -1 否则 0
 54     return sign(cross(k2-k1,k3-k1));
 55 }
 56 int checkLL(point k1,point k2,point k3,point k4){// 求直线 (L) 线段 (S)k1,k2 和 k3,k4 的交点
 57     return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
 58 }
 59 point getLL(point k1,point k2,point k3,point k4){
 60     db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2);
 61 }
 62 int intersect(db l1,db r1,db l2,db r2){
 63     if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-1&&cmp(r2,l1)!=-1;
 64 }
 65 int checkSS(point k1,point k2,point k3,point k4){
 66     return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
 67            sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0&&
 68            sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
 69 }
 70 db disSP(point k1,point k2,point q){
 71     point k3=proj(k1,k2,q);
 72     if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2));
 73 }
 74 db disSS(point k1,point k2,point k3,point k4){
 75     if (checkSS(k1,k2,k3,k4)) return 0;
 76     else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k4,k1),disSP(k3,k4,k2)));
 77 }
 78 int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;}
 79 struct circle{
 80     point o; db r;
 81     void scan(){o.scan(); scanf("%lf",&r);}
 82     int inside(point k){return cmp(r,o.dis(k));}
 83 };
 84 struct line{
 85     // p[0]->p[1]
 86     point p[2];
 87     line(point k1,point k2){p[0]=k1; p[1]=k2;}
 88     point& operator [] (int k){return p[k];}
 89     int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>=0;}//非严格包含。
 90     point dir(){return p[1]-p[0];}
 91     line push(){ // 向外 ( 左手边 ) 平移 eps
 92         const db eps = 1e-6;
 93         point delta=(p[1]-p[0]).turn90().unit()*eps;
 94         return {p[0]-delta,p[1]-delta};
 95     }
 96 };
 97 point getLL(line k1,line k2){return getLL(k1[0],k1[1],k2[0],k2[1]);}
 98 int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;}
 99 int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;}
100 int operator < (line k1,line k2){
101     if (sameDir(k1,k2)) return k2.include(k1[0]);
102     return compareangle(k1.dir(),k2.dir());
103 }
104 int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}
105 vector<line> getHL(vector<line> &L){ // 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针
106     sort(L.begin(),L.end()); deque<line> q;
107     for (int i=0;i<(int)L.size();i++){
108         if (i&&sameDir(L[i],L[i-1])) continue;
109         while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back();
110         while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
111         q.push_back(L[i]);
112     }
113     while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back();
114     while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front();
115     vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);
116     return ans;
117 }
118 int t,n;
119 point p[10005];
120 bool cw(){//时针
121     db s=0;
122     for(int i=1;i<n-1;i++){
123         s+=cross(p[i]-p[0],p[i+1]-p[0]);
124     }
125     return s>0;
126 }
127 vector<line> l;
128 int main(){
129     scanf("%d",&t);
130     while (t--){
131         scanf("%d",&n);
132         rep(n) scanf("%lf%lf",&p[i].x,&p[i].y);
133         if(!cw())reverse(p,p+n);
134         for(int i=0;i<n;i++){
135             l.push_back(line(p[i],p[(i+1)%n]));
136         }
137         l=getHL(l);
138         if(l.size()>=3){
139             printf("YES\n");
140         } else{
141             printf("NO\n");
142         }
143         l.clear();
144     }
145 }
146 /**
147 1
148 17
149 2 -1  2 -2  1 -2  0 -1  -1 -2  -2 -2  -2 -1  -1 0  -2 1  -2 2  -1 2  0 1  1 2  3 2  3 1  2 1  1 0
150 
151 */
View Code

 

poj3335

原文:https://www.cnblogs.com/MXang/p/10452635.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!