# 随机梯度下降 from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScaler # 归一化数据 std = StandardScaler() std.fit(X_train) X_train_std = std.transform(X_train) X_test_std = std.transform(X_test) # n_iter代表浏览多少次,默认是5 sgd_reg = SGDRegressor(n_iter=100) sgd_reg.fit(X_train_std, y_train) sgd_reg.score(X_test_std, y_test)
原文:https://www.cnblogs.com/jp-mao/p/10458858.html