首页 > 其他 > 详细

机器学习初入门03 - Matplotlib

时间:2019-03-02 22:40:53      阅读:218      评论:0      收藏:0      [点我收藏+]

这一部分很简单,所以以代码的形式给出,在实际学习开发中,Matplotlib最好只把它当成一个画图的工具来用,没有必要深究其实现原理是什么。

一、折线图的绘制

import pandas as pd

unrate = pd.read_csv("unrate.csv")

print(unrate.head(5))

#pandas应该会自动把xxxx/xx/xx转化为标准时间格式xxxx-xx-xx,如果没有,用下面一行代码实现

# unrate["DATE"] = pd.to_datetime(unrate["DATE"])

原始数据:                                       代码执行结果:

技术分享图片

技术分享图片

 

 

 

 

 

 

 

 

 

 

import matplotlib.pyplot as plt

#画图

plt.plot()

#把画的图显示出来

plt.show()

技术分享图片

first_twelve = unrate[0:12]

#第一个参数为横轴,第二个参数为纵轴

plt.plot(first_twelve["DATE"], first_twelve["VALUE"])

plt.show()

技术分享图片

#可以看到上图的横坐标丑的一匹,怎么办呢

plt.plot(first_twelve["DATE"], first_twelve["VALUE"])

#指定x轴标签的角度

plt.xticks(rotation=45)

plt.show()

技术分享图片

#给图像加标签

plt.plot(first_twelve["DATE"], first_twelve["VALUE"])

plt.xticks(rotation=45)

plt.xlabel("DATA")

plt.ylabel(‘Unemployment Rate‘)

plt.title(‘Monthly unemployment Trends, 1948‘)

plt.show()

技术分享图片

 

二、子图操作

import matplotlib.pyplot as plt

#定义画图区域

fig = plt.figure()

#画子图

#前两个参数代表是一个2*2的画图区域,最后一个参数表示该子图的位置

ax1 = fig.add_subplot(2,2,1)

ax2 = fig.add_subplot(2,2,2)

ax3 = fig.add_subplot(2,2,4)

plt.show()

技术分享图片

import numpy as np

#指定画图区域的大小

fig = plt.figure(figsize = (3,3))

 

ax1 = fig.add_subplot(2,1,1)

ax2 = fig.add_subplot(2,1,2)

 

ax1.plot(np.random.randint(1,5,5), np.arange(5))

ax2.plot(np.arange(10)*3, np.arange(10))

plt.show()

技术分享图片

import pandas as pd

unrate = pd.read_csv("unrate.csv")

unrate["DATE"] = pd.to_datetime(unrate["DATE"])

unrate[‘MONTH‘] = unrate[‘DATE‘].dt.month

 

fig = plt.figure(figsize=(6,3))

 

#在一个图里画多条折线,c指定颜色,可以直接是颜色名称,也可以是RGB

plt.plot(unrate[0:12]["MONTH"], unrate[0:12][‘VALUE‘], c=‘red‘)

plt.plot(unrate[12:24]["MONTH"], unrate[12:24][‘VALUE‘], c=‘blue‘)

plt.show()

技术分享图片

fig = plt.figure(figsize=(10, 6))

colors = [‘red‘, ‘blue‘, ‘green‘, ‘orange‘, ‘black‘]

for i in range(5):

start_index = i * 12

end_index = (i + 1) * 12

subset = unrate[start_index:end_index]

label = str(1948 + i)

plt.plot(subset[‘MONTH‘], subset["VALUE"], c=colors[i], label=label)

#标签框出现在哪

plt.legend(loc=‘best‘)

plt.show()

 

技术分享图片

 

三、条形图与散点图

import pandas as pd

reviews = pd.read_csv(‘fandango_scores.csv‘)

cols = [

‘FILM‘, ‘RT_user_norm‘, ‘Metacritic_user_nom‘, ‘IMDB_norm‘,

‘Fandango_Ratingvalue‘, ‘Fandango_Stars‘

]

norm_reviews = reviews[cols]

print(norm_reviews[:1] , \n)

 

import matplotlib.pyplot as plt

from numpy import arange

num_cols = [

‘RT_user_norm‘, ‘Metacritic_user_nom‘, ‘IMDB_norm‘, ‘Fandango_Ratingvalue‘,

‘Fandango_Stars‘

]

 

#定义条形图的条高

# .ix 允许混合使用下标和名称进行选取。df.ix[[.1.],[.2.]],1框内必须统一,必须同时是下标或者名称,2框也一样。

# 1框是用来指定row2框是指定column,但是在python3ix是不赞成使用的

# bar_heights = norm_reviews.ix[0,num_cols].values

bar_heights = norm_reviews.loc[0][num_cols].values

print(norm_reviews.loc[0][num_cols], \n\n, bar_heights, \n)

#定义条的位置,即离原点有多远

bar_positions = arange(5) + 0.75

print(bar_positions)

 

ax = plt.subplot()

#画条形图,第三个参数定义条宽

ax.bar(bar_positions, bar_heights, 0.3)

plt.show()

 

技术分享图片 技术分享图片

bar_heights = norm_reviews.loc[0][num_cols].values

bar_positions = arange(5) + 1

#python range() 函数可创建一个整数列表

tick_positions = range(1, 6)

ax = plt.subplot()

 

ax.bar(bar_positions, bar_heights, 0.5)

ax.set_xticks(tick_positions)

ax.set_xticklabels(num_cols, rotation=45)

 

ax.set_xlabel(‘Rating Source‘)

ax.set_ylabel(‘Average Rating‘)

ax.set_title(‘Average User Rating For Avengers: Age of Ultron (2015)‘)

 

#如果图片显示不全,用下面的命令

plt.tight_layout()

 

plt.show()

技术分享图片

bar_widths = norm_reviews.loc[0][num_cols].values

bar_positions = arange(5) + 1

tick_positions = range(1, 6)

ax = plt.subplot()

 

ax.barh(bar_positions, bar_widths, 0.5)

ax.set_yticks(tick_positions)

ax.set_yticklabels(num_cols)

 

ax.set_ylabel(‘Rating Source‘)

ax.set_xlabel(‘Average Rating‘)

ax.set_title(‘Average User Rating For Avengers: Age of Ultron (2015)‘)

 

plt.tight_layout()

plt.show()

 

技术分享图片

#画散点图

ax = plt.subplot()

ax.scatter(norm_reviews[‘Fandango_Ratingvalue‘], norm_reviews[‘RT_user_norm‘])

ax.set_xlabel(‘Fandango‘)

ax.set_ylabel(‘Rotten Tomatoes‘)

plt.show()

技术分享图片

fig = plt.figure(figsize=(5, 10))

ax1 = fig.add_subplot(2, 1, 1)

ax2 = fig.add_subplot(2, 1, 2)

ax1.scatter(norm_reviews[‘Fandango_Ratingvalue‘], norm_reviews[‘RT_user_norm‘])

ax1.set_xlabel(‘Fandango‘)

ax1.set_ylabel(‘Rotten Tomatoes‘)

ax2.scatter(norm_reviews[‘RT_user_norm‘], norm_reviews[‘Fandango_Ratingvalue‘])

ax2.set_xlabel(‘Rotten Tomatoes‘)

ax2.set_ylabel(‘Fandango‘)

 

plt.show()

技术分享图片

 

四、柱形图与盒图

import pandas as pd

import matplotlib.pyplot as plt

reviews = pd.read_csv(‘fandango_scores.csv‘)

cols = [

‘FILM‘, ‘RT_user_norm‘, ‘Metacritic_user_nom‘, ‘IMDB_norm‘,

‘Fandango_Ratingvalue‘, ‘Fandango_Stars‘

]

norm_reviews = reviews[cols]

# print(norm_reviews[:5])

 

fandango_distribution = norm_reviews[‘Fandango_Ratingvalue‘].value_counts()

fandango_distribution = fandango_distribution.sort_index()

 

imdb_distribution = norm_reviews[‘IMDB_norm‘].value_counts()

imdb_distribution = imdb_distribution.sort_index()

 

ax = plt.subplot()

#hist可以指定bins,即指定有多少个区间,bins缺省时默认是10

ax.hist(norm_reviews[‘Fandango_Ratingvalue‘])

# ax.hist(norm_reviews[‘Fandango_Ratingvalue‘],bins=20)

# range指定显示在图上的总区间

# ax.hist(norm_reviews[‘Fandango_Ratingvalue‘], range=(4, 5), bins=20)

plt.show()

技术分享图片技术分享图片技术分享图片技术分享图片

fig = plt.figure(figsize=(5, 20))

ax1 = fig.add_subplot(1, 4, 1)

ax2 = fig.add_subplot(1, 4, 2)

ax3 = fig.add_subplot(1, 4, 3)

ax4 = fig.add_subplot(1, 4, 4)

ax1.hist(norm_reviews[‘Fandango_Ratingvalue‘], bins=20, range=(0, 5))

ax1.set_title(‘Distribution of Fandango Ratings‘)

#指定y轴区间

ax1.set_ylim(0, 50)

 

ax2.hist(norm_reviews[‘RT_user_norm‘], 20, range=(0, 5))

ax2.set_title(‘Distribution of Rotten Tomatoes Ratings‘)

ax2.set_ylim(0, 50)

 

ax3.hist(norm_reviews[‘Metacritic_user_nom‘], 20, range=(0, 5))

ax3.set_title(‘Distribution of Metacritic Ratings‘)

ax3.set_ylim(0, 50)

 

ax4.hist(norm_reviews[‘IMDB_norm‘], 20, range=(0, 5))

ax4.set_title(‘Distribution of IMDB Ratings‘)

ax4.set_ylim(0, 50)

 

plt.show()

 

技术分享图片

#画盒图

ax = plt.subplot()

ax.boxplot(norm_reviews[‘RT_user_norm‘])

ax.set_xticklabels([‘Rotten Tomatoes‘])

ax.set_ylim(0, 5)

plt.show()

技术分享图片

num_cols = [

‘RT_user_norm‘, ‘Metacritic_user_nom‘, ‘IMDB_norm‘, ‘Fandango_Ratingvalue‘

]

fig, ax = plt.subplots()

ax.boxplot(norm_reviews[num_cols].values)

ax.set_xticklabels(num_cols, rotation=90)

ax.set_ylim(0, 5)

plt.tight_layout()

plt.show()

技术分享图片

机器学习初入门03 - Matplotlib

原文:https://www.cnblogs.com/gyhmolo/p/10463124.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!