\(u \cdot v = u^T v\)
- 点积 = 0 -> 向量垂直
- 向量点积通常用于求投影
||v|| = sqrt(v.v)
- 利用点积求向量长度
\(v' = \frac{v}{||v||} = \frac{1}{\sqrt(v_1^2 + v_2^2 + ... + v_n^2)}v\)
- 令向量长度为1
Scalar Triple Product \(A\cdot(B \times C)\)
- 体积:叉乘的值是BC形成的面积,方向与BC形成的面垂直;再点乘时相当于A在BC垂线上的投影->高与面积相乘->体积
- 可以判断三向量共面,若共面,A与BC叉乘的点乘应为0
Origin is a special point 原点
O = (0, 0, ...)
Position Vector: Vector joining origin to a point
能将点唯一确定->坐标系
Concept of Dimension
Dimension of Space v/s Dimension of Object
Polar Co-ordinates 极坐标
应用:航海时始终以自己为原点
Left handed 左手系
可能影响计算的简化程度
Consider, the equation of line
\begin{equation}
\begin{aligned}
L &= P_1 + t * ( P_2-P_1 )\\
&= (1-t) * P_1 + t * P_2
\end{aligned}
\end{equation}
Note that, if \(0 < (\alpha , \beta , \gamma) < 1\) point P lies inside the triangle
限制范围(0,1)后点落在三角形内部
Convex combination is an ++affine combination++, where all the weights are constrained to interval [0,1]
广义仿射变换只要求和为1,若要求0-1之间->凸组合
Given a polygon, if all convex combinations of the vertices of the polygon lie inside the polygon, then we say that, the polygon is Convex(凸) otherwise it is said to be Concave(凹)
许多绘制算法中要求多边形为凸
How to find the intersection between a moving vertex and a deforming triangle?
deforming 变形,并非刚体移动。如布料随风飘动
Inside test
-> Continuous Collision Deteciton 连续碰撞检测
Heuristic Culling -> Non-Penetraion Filters 非穿透性过滤器
- 如果点一直在面的一侧,能否判断没有发生过穿透:两个叉积是不够的,要做六个
- M. Tang, D. Manocha, and R. F. Tong. Fast continuous collision detection using deforming non-penetration filters. Proceedings of the ACM SIGGRAPH symposium on Interactive 3D Graphicsand Games, pages 7-14, 2010
Two dimensional arrangement of numbers
In a sense, it is a generalization of vectors
It has number of rows and columns
Square Matrix 方阵
Matrix whose columns = rows
Identity Matrix: I
A square matrix with diagonal elements = 1 and other elements = 0
Transpose of a Matrix: \(A^T\)
Multiplication of Matrices: \(R[i,j] = \sum A[i,k] * B[k,j]\)
In general, \(AB \ne BA\)
Vector - Matrix Multiplication
Matrix - Matrix Multiplication
Inverse of Matrix: A
This is usually used while solving a set of linear equations:
\begin{equation}
\begin{aligned}
Ax &= B\\
x &= A^{-1} B
\end{aligned}
\end{equation}
原文:https://www.cnblogs.com/whale90830/p/10483272.html