首页 > 其他 > 详细

数据分析的Pandas_objects

时间:2019-03-06 22:30:03      阅读:122      评论:0      收藏:0      [点我收藏+]

导入pandas

import pandas as pd
from pandas import Series,DataFrame
import numpy as np

1.Series

  Series是一种类似与一维数组的对象,由下面两个部分组成:

    values:一组数据(ndarray类型)

    index:相关的数据索引标签

1.1  Series的创建

 两种创建方式:
  由列表或numpy数组创建

    默认索引为0到N-1的整数型索引

#使用列表创建Series
Series(data=[1,2,3,4,5])

#使用numpy创建Series
Series(data=np.random.randint(1,40,size=(5,)),index=[a,d,f,g,t],name=bobo)

    可以通过设置index参数指定索引

  由字典创建:不能在使用index,但是依然存在默认索引

    注意:数据源必须为一维数据

dic = {
    语文:100,
    英语:99
}
s = Series(data=dic)

1.2 Series的索引和切片

  可以使用中括号取单个索引(此时返回的是元素类型),或者中括号里一个列表取多个索引(此时返回的是一个Series类型)。

  显式索引:

    使用index中的元素作为索引值

    使用s.loc[ ]    注意:loc中括号中放置的一定是显示索引

  注意:此时是闭区间

s.iloc[1]

  隐式索引:

    使用整数作为索引值

    使用.iloc[](推荐):iloc中的中括号中必须放置隐式索引

  注意:此时是半开区间

切片:隐式索引切片和显示索引切片

  显示索引切片: index和loc

s.iloc[0:2]

  隐式索引切片:整数索引值和iloc

1.3  Series的基本概念

  可以把Series看成一个定长的有序字典

  向Series增加一行:相当于给字典增加一组键值对

  可以通过shape,size,index,values等得到series的属性

s.index

s.values

  可以使用s.head(),tail()分别查看前n个和后n个值

s.head(1)

  对Series元素进行去重

s = Series(data=[1,1,2,2,3,3,4,4,4,4,4,5,6,7,55,55,44])
s.unique()

    当索引没有对应的值时,可能出现缺失数据显示NaN(not a number)的情况

  使得两个Series进行相加:索引与之对应的元素会进行算数运算,不对应的就补空

s1 = Series([1,2,3,4,5],index=[a,b,c,d,e])
s2 = Series([1,2,3,4,5],index=[a,b,f,c,e])
s = s1+s2
s

  可以使用pd.isnull(),pd.notnull(),或s.isnull(),notnull()函数检测缺失数据

s.notnull()

s[s.notnull()]

1.4  Series的运算

   + - * /

   add() sub() mul() div() : s1.add(s2,fill_value=0)

s1.add(s2)

  Series之间的运算

    在运算中自动对齐不同索引的数据

    如果索引不对应,则补NaN

2. DataFrame

  DataFrame是一个【表格型】的数据结构。DataFrame由按一定顺序排列的多列数据组成。设计初衷是将Series的使用场景从一维拓展到多维。DataFrame既有行索引,也有列索引。

  行索引:index

  列索引:columns

  值:values

2.1  DataFrame的创建

  最常用的方法是传递一个字典来创建。DataFrame以字典的键作为每一【列】的名称,以字典的值(一个数组)作为每一列。

  此外,DataFrame会自动加上每一行的索引。

  使用字典创建的DataFrame后,则columns参数将不可被使用。

  同Series一样,若传入的列与字典的键不匹配,则相应的值为NaN。

  使用ndarray创建DataFrame

DataFrame(data=np.random.randint(0,100,size=(5,6)))

DataFrame的属性: values、columns、index、shape

df.values

df.index

  使用ndarray创建DataFrame:创建一个表格用于展示张三,李四,王五的java,python的成绩

dic = {
    张三:[77,88,99,90],
    李四:[67,88,99,78]
}
df = DataFrame(data=dic,index=[语文,数学,英语,理综])
df

2.2 DataFrame的索引

  对列进行索引

    通过类似字典的方式   df ["q"]

    通过属性的方式   df.q

  可以将DataFrame的列获取为一个Series。返回的Series拥有原DataFrame相同的索引,且name属性也已经设置好了,就是相应的列名。

df[张三]

df.张三

df[[李四,张三]]
#修改列索引
df.columns = [zhangsan,lisi]
df

  对行进行索引

    使用.loc [ ] 加index来进行行索引

    使用.iloc [ ] 加整数来进行行索引

  同样返回一个Series,index为原来的columns

df.iloc[[0,1]]

  对元素索引的方法

    使用列索引

    使用行索引(iloc[3,1] or loc["C", "q"]) 行索引在前,列索引在后

df.iloc[0,1]

切片:

  注意: 直接用中括号时

     索引表示的是列索引

     切片表示的是行切片

df[0:2]

在loc和iloc中使用切片(切列): df.loc[‘B‘,‘C‘,‘丙‘, ‘丁‘]

df.iloc[:,0:1]

  DataFrame的运算

    在运算中自动对齐不同索引的数据

    如果索引不对应,则补NaN

df.loc[数学,zhangsan] = 0

df[lisi] += 100

df += 10

(df+df)/2

 

数据分析的Pandas_objects

原文:https://www.cnblogs.com/chenxi67/p/10486419.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!