首页 > 其他 > 详细

sparkStreaming 与fafka直接方式 进行消费者偏移量的保存如redis 里面 避免代码改变与节点重启后的数据丢失与序列化问题

时间:2019-03-08 00:37:45      阅读:343      评论:0      收藏:0      [点我收藏+]
import java.util

import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange}
import org.apache.spark.streaming.{Duration, StreamingContext}
import redis.clients.jedis.{Jedis, JedisPool, JedisPoolConfig}

object KafkaDricteRedis {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("redis").setMaster("local[*]")
    val ssc = new StreamingContext(conf,new Duration(5000))

    val groupid = "GB01" //组名
    val topic = "topic_bc"//topic 名
    //在redis中以 groupid/topic作为唯一标识 ,存储分区偏移量
    //在Reids 使用的时hash类型来存储
    val gtKey = groupid+"/"+topic
    //topic
    val topics = Set(topic)
    //zk地址
    val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
    //brokerList
    val brokerList = "hadoop04:9092,hadoop05:9092,hadoop06:9092"

    val kafkaParams = Map(
      // metadata.broker.list
      "metadata.broker.list"->brokerList,
      "group.id"->groupid,
      "auto.offset.reset"->kafka.api.OffsetRequest.SmallestTimeString
      //从头开始消费
    )
    //记录topic 、分区对应的偏移量偏移量,在创建InputDStream时作为参数传如
    //从这个偏移量开始读取
    var fromOffset = Map[TopicAndPartition,Long]()
    var kafkaDStream :InputDStream[(String,String)] = null
    //    获取一个jedis连接
    val conn = getConnection()
    // conn.flushDB()
    //jd.hget(groupid+topic,"")
    //获取全部的keys
    val values: util.Set[String] = conn.keys("*")
    //println(values)
    // [GB01/wordcount3]   分区数   偏移量
    //如果keys中包含 GB01/wordcount3这样的key,则表示以前读取过
    if(values.contains(gtKey)){
      //获取key 为GB01/wordcount3 下面所对应的(k,v)


      /**  conn.hgetAll(gtKey) GB01/wordcount3:
        * 1  888
        * 2  888
        * 3  888
        * 4  888
        */
      var allKey: util.Map[String, String] = conn.hgetAll(gtKey)
      //导入后,可以把Java中的集合转换为Scala中的集合
      import scala.collection.JavaConversions._
      var list: List[(String, String)] = allKey.toList
      //循环得到的(k,v)
      //这里面的 k 对应的是分区, v对应的是偏移量
      for (key <- list){ //这里的key是一个tuple类型
        //new一个TopicAndPartition 把 topic 和分区数传入
        val tp = new TopicAndPartition(topic,key._1.toInt)
        //把每个topic 分区 对应的偏移量传入
        fromOffset +=  tp -> key._2.toLong
        println("分区"+key._1+"偏移量为"+key._2)
      }
      //这里的是把数据(key ,value)是kafka 的key默认是null,
      //value 是kafka中的value
      val messageHandler =(mmd:MessageAndMetadata[String,String])=>{
        ( mmd.key(),mmd.message())
      }
      //创建一个InputDStream
      kafkaDStream= KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder,(String,String)](ssc,
        kafkaParams,fromOffset,messageHandler)
    }else{
      //如果以前没有读取过,创建一个新的InputDStream
      kafkaDStream= KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](
        ssc,kafkaParams,topics
      )

    }
    //用来更新偏移量,OffsetRange中可以获取分区及偏移量
    var OffsetRangs = Array[OffsetRange]()
    //
    kafkaDStream.foreachRDD(kafkaRDD=> {
      //这里面的RDD是kafkaRDD ,可以转换为HasOffsetRange
      val ranges = kafkaRDD.asInstanceOf[HasOffsetRanges]
//      获取分区信息的集合
      OffsetRangs = ranges.offsetRanges
      //获取value,(key 默认是null,没有用)
      val map: RDD[String] = kafkaRDD.map(_._2)
      map.foreach(x=>print(""))

      //更新偏移量
      for (o <- OffsetRangs){
        //取出偏移量
        val offset = o.untilOffset
        //取出分区
        val partition = o.partition
        println("partition: "+partition)
        println("offset: "+offset)
        //把通过hset,把对应的partition和offset写入到redis中
        conn.hset(gtKey,partition.toString,offset.toString)
      }
    })


    ssc.start()
    ssc.awaitTermination()




  }
  //Jedis连接池
  def getConnection(): Jedis ={
    //new 一个JedisPoolConfig,用来设定参数
    val conf = new JedisPoolConfig()
    val pool = new JedisPool(conf,"192.168.121.12",6379)
    //最大连接数
    conf.setMaxTotal(20)
    //最大空闲数
    conf.setMaxIdle(20)

    val jedis = pool.getResource()
    //密码
    jedis.auth("test123")
    jedis

  }

 

sparkStreaming 与fafka直接方式 进行消费者偏移量的保存如redis 里面 避免代码改变与节点重启后的数据丢失与序列化问题

原文:https://www.cnblogs.com/hejunhong/p/10493411.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!