首页 > 其他 > 详细

576. Out of Boundary Paths

时间:2019-03-08 21:59:56      阅读:208      评论:0      收藏:0      [点我收藏+]

There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ball to adjacent cell or cross the grid boundary in four directions (up, down, left, right). However, you can at most move N times. Find out the number of paths to move the ball out of grid boundary. The answer may be very large, return it after mod 109 + 7.

 

Example 1:

Input: m = 2, n = 2, N = 2, i = 0, j = 0
Output: 6
Explanation:
技术分享图片

Example 2:

Input: m = 1, n = 3, N = 3, i = 0, j = 1
Output: 12
Explanation:
技术分享图片

 

Note:

  1. Once you move the ball out of boundary, you cannot move it back.
  2. The length and height of the grid is in range [1,50].
  3. N is in range [0,50].
 

Approach #1: DP. [C++]

class Solution {
public:
    int findPaths(int m, int n, int N, int i, int j) {
        const int mod = 1000000007;
        vector<vector<vector<int>>> dp(N+1, vector<vector<int>>(m, vector<int>(n, 0)));
        vector<int> dirs = {1, 0, -1, 0, 1};
        for (int s = 1; s <= N; ++s) {
            for (int x = 0; x < m; ++x) {
                for (int y = 0; y < n; ++y) {
                    for (int k = 0; k < 4; ++k) {
                        int dx = x + dirs[k];
                        int dy = y + dirs[k+1];
                        if (dx < 0 || dy < 0 || dx >= m || dy >= n) 
                            dp[s][x][y] += 1;
                        else 
                            dp[s][x][y] = (dp[s][x][y] + dp[s-1][dx][dy]) % mod;
                    }
                }
            }
        }
        return dp[N][i][j];
    }
};

  

Analysis:

Observation:

Number of paths start from (i, j) to out of boundary <=> Number of paths start from out of boundary to (i, j).

 

dp[N][i][j] : Number of paths start from out of boundary to (i, j) by moving N steps.

dp[*][y][x] = 1, if (x, y) are out of boundary

dp[s][i][j] = dp[s-1][i+1][j] + dp[s-1][i-1][j] + dp[s-1][i][j+1] + dp[s-1][i][j-1]

 

Ans: dp[N][i][j]

 

Time complexity: O(N*m*n)

Space complexity: O(N*m*n) -> O(m*n)

 

Reference:

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-576-out-of-boundary-paths/

 

576. Out of Boundary Paths

原文:https://www.cnblogs.com/ruruozhenhao/p/10498491.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!