首页 > 其他 > 详细

初探卷积神经网络

时间:2019-03-14 21:57:03      阅读:179      评论:0      收藏:0      [点我收藏+]

 

1. 分类

a)      卷积神经网络和全连接神经网络,全连接神经网络问题在于全连接层的参数太多。

2. 卷积神经网络的结构组成:

a)      一张图片的像素矩阵,长和宽分别表示图像的大小,三维矩阵的深度表示色彩通道。

b)      卷积层深入分析上一层中的一小块,从而得到抽象程度更高的特征。三维矩阵的深度会加深。

c)      池化层可以降低图片的分辨率,从而降低全连接层中参数个数。

d)      全连接层完成最后的分类工作

e)      Softmax层得到最后不同种类的概率分布。

3.卷积层:

a)      过滤器尺寸人为设定,通常为3*3,5*5。

b)      过滤器深度人为设定,单位矩阵的输出深度。

c)      激活函数(p142)

d)      过滤器处理每一个子矩阵。改变过滤器的步长或者用0填充可以改变输出矩阵的大小。(p144)

4.池化层:

a)      最大池化层,平均池化层。

5.经典卷积网络模型

 

初探卷积神经网络

原文:https://www.cnblogs.com/hang-shao/p/10533650.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!