首页 > 其他 > 详细

卷积之后尺寸变化

时间:2019-03-18 14:17:38      阅读:234      评论:0      收藏:0      [点我收藏+]

卷积尺度变化

输入矩阵格式: 样本数目,图像高度,图像宽度,图像通道数
卷积之后矩阵格式: 样本数目,图像高度,图像宽度,图像通道数 (后三个维度在卷积之后会发生变化)
权重矩阵(卷积核的格式:卷积核高度,卷积核宽度,输入通道数,输出通道数(以RGB为例,每个通道对应自己的一个权重矩阵),输出通道数(卷积核的个数)
偏置: 输出通道数(一个卷积核对应一个偏置)
H_out = (H_in-H_k+2padding)/stride + 1
W_out = (W_in-W_k+2
padding)/stride + 1

CNN中卷积层的计算细节 - Michael Yuan的文章 - 知乎
https://zhuanlan.zhihu.com/p/29119239

在深度学习框架中,如果我们选择padding = ‘SAME‘,输出的尺寸为W/S \lceil W/S \rceil

如果我们选择为padding = ‘Valid‘,输出尺寸: \lceil (W-F+1)/S \rceil (向上取整)
参考-TensorFlow中CNN的两种padding方式“SAME”和“VALID”

卷积之后尺寸变化

原文:https://www.cnblogs.com/lzida9223/p/10551808.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!