首页 > 其他 > 详细

图像到图像的映射

时间:2019-03-19 15:44:59      阅读:139      评论:0      收藏:0      [点我收藏+]

1. 仿射变换原理

  仿射变换(Affine Transformation 或Affine Map)是一种二维坐标(x, y)到二维坐标(u, v)的线性变换,其数学表达式形式如下:

  技术分享图片

  对应的齐次坐标矩阵表示形式为:

  技术分享图片

  仿射变换保持了二维图形的“平直性”(直线经仿射变换后依然为直线)和“平行性”(直线之间的相对位置关系保持不变,平行线经仿射变换后依然为平行线,且直线上点的位置顺序不会发生变化)。非共线的三对对应点确定一个唯一的仿射变换。

2.拼接图像

  估计出图像间的单应性矩阵(使用RANSAC算法),现在我们需要将所有的图像扭曲到一个公共的图像平面上。通常,这里的公共平面为中心图像平面。一种方法是创建一个很大的图像,比如图像中全部填充0,使其和中心图像平行,然后将所有的图像扭曲到上面,由于我们所有的图像是由照相机水平旋转拍摄的,因此我们可以使用一个较简单的步骤:将中心图像左边或者右边的区域填充0,以便为扭曲的图像腾出空间。

3.alpha通道

  在图形图像学中,透明通道也称Alpha通道,代表数字图像中像素点的透明信息。白色的Alpha像素用以定义不透明的彩色像素,而黑色的Alpha定以透明像素,黑白之间的灰阶则是彩色图片中的半透明部分。

4.代码

技术分享图片
 1  # -*- coding: utf-8 -*-
 2 from PCV.geometry import warp, homography
 3 from PIL import Image
 4 from pylab import *
 5 from scipy import ndimage
 6 
 7 # example of affine warp of im1 onto im2
 8 
 9 im1 = array(Image.open(C:/Users/w/PycharmProjects/sift/picture/1.jpg).convert(L))
10 im2 = array(Image.open(C:/Users/w/PycharmProjects/sift/picture/2.jpg).convert(L))
11 # set to points
12 tp = array([[120,260,260,120],[16,16,305,305],[1,1,1,1]])#变换的目标坐标
13 #tp = array([[675,826,826,677],[55,52,281,277],[1,1,1,1]])
14 im3 = warp.image_in_image(im1,im2,tp)#函数内部warp
15 figure()
16 gray()
17 subplot(141)
18 axis(off)
19 imshow(im1)
20 subplot(142)
21 axis(off)
22 imshow(im2)
23 subplot(143)
24 axis(off)
25 imshow(im3)
26 
27 # set from points to corners of im1
28 m,n = im1.shape[:2]
29 fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])
30 # first triangle
31 tp2 = tp[:,:3]
32 fp2 = fp[:,:3]
33 # compute H
34 H = homography.Haffine_from_points(tp2,fp2)#
35 im1_t = ndimage.affine_transform(im1,H[:2,:2],(H[0,2],H[1,2]),im2.shape[:2])
36 # alpha for triangle
37 alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])#图像alpha通道
38 im3 = (1-alpha)*im2 + alpha*im1_t
39 # second triangle
40 tp2 = tp[:,[0,2,3]]
41 fp2 = fp[:,[0,2,3]]
42 # compute H
43 H = homography.Haffine_from_points(tp2,fp2)
44 im1_t = ndimage.affine_transform(im1,H[:2,:2],
45 (H[0,2],H[1,2]),im2.shape[:2])
46 # alpha for triangle
47 alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
48 im4 = (1-alpha)*im3 + alpha*im1_t
49 subplot(144)
50 imshow(im4)
51 axis(off)
52 show()
View Code

5.结果

 

 

 

 

技术分享图片

图像到图像的映射

原文:https://www.cnblogs.com/wenbozhu/p/10559068.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!