首页 > 其他 > 详细

MapReduce体系结构及各种算法(1)

时间:2014-08-07 15:53:20      阅读:458      评论:0      收藏:0      [点我收藏+]

一、MapReduce的介绍

MapReduce是Hadoop的分布式计算框架,由两个阶段组成,分别是map和reduce阶段,对于程序员而言,使用过程非常简单,只要覆盖map阶段中的map方法和reduce节点的reduce方法即可

map和reduce阶段的形参的键值对的形式

mapreduce的执行流程

bubuko.com,布布扣

瓶颈:磁盘IO

mapreduce执行原理

bubuko.com,布布扣

1.1 读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。

1.2 写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

1.3 对输出的key、value进行分区。

1.4 对不同分区的数据,按照key进行排序、分组。相同key的value放到一个集合中。

1.5 (可选)分组后的数据进行归约。(Combine)

2.0 reduce任务处理

2.1 对多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点。

2.2 对多个map任务的输出进行合并、排序。写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

2.3 把reduce的输出保存到文件中。

例子:实现WordCountApp

# 第一个统计单词的java程序(hadoop自带的例子源码)

package org.apache.hadoop.examples;



import java.io.IOException;

import java.util.StringTokenizer;



import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;



@SuppressWarnings("all")

public class WordCount {



public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {



private final static IntWritable one = new IntWritable(1);

private Text word = new Text();



public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}



public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

private IntWritable result = new IntWritable();



public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}



public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

if (otherArgs.length != 2) {

System.err.println("Usage: wordcount <in> <out>");

System.exit(2);

}

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

下面运行命令跟输出结果

[hadoop@master hadoop-1.1.2]$ hadoop jar hadoop-yting-wordcounter.jar org.apache.hadoop.examples.WordCount /user/hadoop/20140303/test.txt /user/hadoop/20140303/output001

[hadoop@master hadoop-1.1.2]$ hadoop fs -ls /user/hadoop/20140303/output001

Found 3 items

-rw-r--r--   1 hadoop supergroup          0 2014-03-03 10:44 /user/hadoop/20140303/output001/_SUCCESS

drwxr-xr-x   - hadoop supergroup          0 2014-03-03 10:43 /user/hadoop/20140303/output001/_logs

-rw-r--r--   1 hadoop supergroup        188 2014-03-03 10:44 /user/hadoop/20140303/output001/part-r-00000

[hadoop@master hadoop-1.1.2]$ hadoop fs -text /user/hadoop/20140303/output001/part-t-00000

text: File does not exist: /user/hadoop/20140303/output001/part-t-00000

[hadoop@master hadoop-1.1.2]$ hadoop fs -text /user/hadoop/20140303/output001/part-r-00000

a 1

again 1

and 1

changce 1

easy 1

forever 1

give 1

hand 1

heart 2

hold 1

最小的MapReduce(默认设置)

Configuration configuration = new Configuration();

Job job = new Job(configuration, "HelloWorld");

job.setInputFormat(TextInputFormat.class);

job.setMapperClass(IdentityMapper.class);

job.setMapOutputKeyClass(LongWritable.class);

job.setMapOutputValueClass(Text.class);

job.setPartitionerClass(HashPartitioner.class);

job.setNumReduceTasks(1);

job.setReducerClass(IdentityReducer.class);

job.setOutputKeyClass(LongWritable.class);

job.setOutputValueClass(Text.class);

job.setOutputFormat(TextOutputFormat.class);

job.waitForCompletion(true);

bubuko.com,布布扣

序列化

Writable

数据流单向的

LongWritable不能进行加减等操作(没必要,java的基本类型都已经弄了这些功能了)

JobTracker,TaskTracker

JobTracker

负责接收用户提交的作业,负责启动、跟踪任务执行。

JobSubmissionProtocol是JobClient与JobTracker通信的接口。

InterTrackerProtocol是TaskTracker与JobTracker通信的接口。

TaskTracker

负责执行任务

JobClient

是用户作业与JobTracker交互的主要接口。

负责提交作业的,负责启动、跟踪任务执行、访问任务状态和日志等。

执行过程

bubuko.com,布布扣


MapReduce体系结构及各种算法(1),布布扣,bubuko.com

MapReduce体系结构及各种算法(1)

原文:http://blog.csdn.net/manburen01/article/details/38417701

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!