图中的每一条边都代表差分约束系统中的一个不等式。现在以V0为源点,求单源最短路径。最终得到的V0到Vn的最短路径长度就是Xn的一个解啦。从图1中可以看到,这组解是{-5, -3, 0, -1, -4}。当然把每个数都加上10也是一组解:{5, 7, 10, 9, 6}。但是这组解只满足不等式组(1),也就是原先的差分约束系统;而不满足不等式组(2),也就是我们后来加上去的那些不等式。当然这是无关紧要的,因为X0本来就是个局外人,是我们后来加上去的,满不满足与X0有关的不等式我们并不在乎。 也有可能出现无解的情况,也就是从源点到某一个顶点不存在最短路径。也说是图中存在负权的圈。这一点我就不展开了,请自已参看最短路径问题的一些基本定理。
其实,对于图1来说,它代表的一组解其实是{0, -5, -3, 0, -1, -4},也就是说X0的值也在这组解当中。但是X0的值是无可争议的,既然是以它作为源点求的最短路径,那么源点到它的最短路径长度当然是0了。因此,实际上我们解的这个差分约束系统无形中又存在一个条件:
X0 = 0 |
也就是说在不等式组(1)、(2)组成的差分约束系统的前提下,再把其中的一个未知数的值定死。这样的情况在实际问题中是很常见的。比如一个问题表面上给出了一些不等式,但还隐藏着一些不等式,比如所有未知数都大于等于0或者都不能超过某个上限之类的。比如上面的不等式组(2)就规定了所有未知数都小于等于0。
对于这种有一个未知数定死的差分约束系统,还有一个有趣的性质,那就是通过最短路径算法求出来的一组解当中,所有未知数都达到最大值。下面我来粗略地证明一下,这个证明过程要结合Bellman-Ford算法的过程来说明。 假设X0是定死的;X1到Xn在满足所有约束的情况下可以取到的最大值分别为M1、M2、……、Mn(当然我们不知道它们的值是多少);解出的源点到每个点的最短路径长度为D1、D2、……、Dn。 基本的Bellman-Ford算法是一开始初始化D1到Dn都是无穷大。然后检查所有的边对应的三角形不等式,一但发现有不满足三角形不等式的情况,则更新对应的D值。最后求出来的D1到Dn就是源点到每个点的最短路径长度。 如果我们一开始初始化D1、D2、……、Dn的值分别为M1、M2、……、Mn,则由于它们全都满足三角形不等式(我们刚才已经假设M1到Mn是一组合法的解),则Bellman-Ford算法不会再更新任合D值,则最后得出的解就是M1、M2、……、Mn。 好了,现在知道了,初始值无穷大时,算出来的是D1、D2、……、Dn;初始值比较小的时候算出来的则是M1、M2、……、Mn。大家用的是同样的算法,同样的计算过程,总不可能初始值大的算出来的结果反而小吧。所以D1、D2、……、Dn就是M1、M2、……、Mn。
那么如果在一个未知数定死的情况下,要求其它所有未知数的最小值怎么办?只要反过来求最长路径就可以了。最长路径中的三角不等式与最短路径中相反:
d(v) >= d(u) + w(u, v) 也就是 d(v) - d(u) >= w(u, v)
|