首页 > 编程语言 > 详细

《时间序列分析及应用.R语言》第十一章阅读笔记

时间:2019-03-24 16:33:21      阅读:255      评论:0      收藏:0      [点我收藏+]

第11章

11.1干预分析

 

 

library(TSA)
win.graph(width = 4.875,height = 2.5,pointsize = 8)
data(airmiles)
plot(log(airmiles),ylab = log(airmiles,xlab = year)

#美国航空的每月客运里程:1996年1月~2005年5月

技术分享图片

as.vector(diff(diff(window(log(airmiles),end = c(2001,8)),12))),lag.max = 48)

#干预期(1-B)(1-B12)log(航空客运里程)的样本ACF  

技术分享图片

air.ma1 <- arimax(log(airmiles),order = c(0,1,1),
                  seasonal = list(order = c(0,1,1),period = 12
                  ),xtransf = data.frame(I911 = 1*(seq(airmiles)==69),
                  I911 = 1*(seq(airmiles)==69)),
                  transfer = list(c(0,0),c(1,0)),xreg = data.frame(
                Dec96 = 1*(seq(airmiles)==12),
                  Jan97 = 1*(seq(airmiles)==13),Dec02 = 1*(seq(airmiles)==84)),
                  method = ‘ML‘)
air.ma1

  #对数化航空客运里程的干预模型的估计

技术分享图片

 

 

plot(log(airmiles),ylab = ‘Log(airmiles)‘)
points(fitted(air.ma1))

  #对数化的航空客运里程与拟合值

技术分享图片

Nine11p <- 1*(seq(airmiles)==69)
plot(ts(Nine11p*(-0.0949)+filter(Nine11p,filter = 0.8139,method = ‘recursive‘,side = 1)
        *(-0.2715),frequency = 12,start = 1996),ylab = ‘9/11‘,type = ‘h‘)
abline(h = 0)

  #9.11事件对航空客运量序列所造成影响的估计

技术分享图片

11.2异常值

  指的是一些不规则的观测值,其出现可能源自测量误差与复制误差其中之一,或者两者都有可能,也可能源于基础过程发生了短期性变化。

  对于时间序列来说可识别的异常值有两种,可加异常值与新息异常值,简记为AO/IO.

  

 

《时间序列分析及应用.R语言》第十一章阅读笔记

原文:https://www.cnblogs.com/xxupup/p/10588650.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!