对数据结构情有独钟,打算慢慢把jdk里的实现都读一遍,发现其中的亮点,持续更新。
这应该是我们学习java最早接触的到的数据结构,众所周知,数组在申请了内存之后,无法扩展;而数组队列,是实现了动态扩容的功能,意义上是为动态数组,实际上的数组扩容是不允许在原地址上伸长的,很简单,因为在你申请的数组空间之后,可能存在别的被申请掉的内存;要实现动态数组,必然是新申请一个更大的连续内存空间,并替换到原来的引用中。
从构造函数,可以清楚看到,elementData,就是这个存储数据的内存地址。
然后,找到添加的接口,add;在真正赋值之前,会进行grow方法。
可以看到,真正干活的是这个copyof,找到最后,就是这个方法。
首先这个泛型数组,会先判断一下如果是Object父类,则直接new Object,如果不是则调用Arrays的接口创建,才去新建一个数组,然后就会去拷贝数组到新的数组,并返回这个被拷贝的数组。
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) { @SuppressWarnings("unchecked") T[] copy = ((Object)newType == (Object)Object[].class) ? (T[]) new Object[newLength] : (T[]) Array.newInstance(newType.getComponentType(), newLength); System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength)); return copy; }
它的get方法,简单判断一下是否大于元素容量,防止内存泄漏的操作。
public E get(int index) { rangeCheck(index); return elementData(index); }
它的remove方法,是将这个位置之后的所有元素,前移一个位置,并将最后的元素设置为null。
public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; }
它提供的排序接口,设计的是传入一个比较器,可以自定升序还是降序,最终一个分支使用的是mergeSort。最后还校验了一下modcount,前后是否相等,如果不相等抛出并发异常,有点CAS的思想。
@Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; }
public static void sort(Object[] a) { if (LegacyMergeSort.userRequested) legacyMergeSort(a); else ComparableTimSort.sort(a, 0, a.length, null, 0, 0); }
长度小于7插入排序,反正是个n平方的排序,
private static void mergeSort(Object[] src, Object[] dest, int low, int high, int off) { int length = high - low; // Insertion sort on smallest arrays if (length < INSERTIONSORT_THRESHOLD) { for (int i=low; i<high; i++) for (int j=i; j>low && ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--) swap(dest, j, j-1); return; } // Recursively sort halves of dest into src int destLow = low; int destHigh = high; low += off; high += off; int mid = (low + high) >>> 1; mergeSort(dest, src, low, mid, -off); mergeSort(dest, src, mid, high, -off); // If list is already sorted, just copy from src to dest. This is an // optimization that results in faster sorts for nearly ordered lists. if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) { System.arraycopy(src, low, dest, destLow, length); return; } // Merge sorted halves (now in src) into dest for(int i = destLow, p = low, q = mid; i < destHigh; i++) { if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) dest[i] = src[p++]; else dest[i] = src[q++]; } }
优先队列,读作优先写作二叉树,也叫堆(大顶堆,小顶堆)。
它的实现方法是数组,使用数组做二叉树,每个元素e[i]的孩子为e[2*i+1],e[2*i+2]。
找到添加元素的方法;比较器为空的时候;它从末尾插入,先找出父亲,如果父节点比自己大,则继续往上,将父节点往下移动,直到找到比它小的位置插入,默认是一个小顶堆。
public boolean offer(E e) { if (e == null) throw new NullPointerException(); modCount++; int i = size; if (i >= queue.length) grow(i + 1); size = i + 1; if (i == 0) queue[0] = e; else siftUp(i, e); return true; } private void siftUpComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>) x; while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (key.compareTo((E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = key; }
弹出操作就是把堆定元素拿走,然后不断往下找合适的往上移。
public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0]; E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x); return result; } private void siftDownComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>)x; int half = size >>> 1; // loop while a non-leaf while (k < half) { int child = (k << 1) + 1; // assume left child is least Object c = queue[child]; int right = child + 1; if (right < size && ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0) c = queue[child = right]; if (key.compareTo((E) c) <= 0) break; queue[k] = c; k = child; } queue[k] = key; }
原文:https://www.cnblogs.com/chentingk/p/10604847.html