你见到这样的式子\(a_{n+1}-a_n = m\) (\(m\)常数)你一定会反应出是等差数列,那么见到 \(S_{n+1}-S_n = m\) (\(m\)常数)还能看出来是等差数列吗,所以你还需要特别注意:对代数式\(a_{n+1}-a_n = m\)或\(\cfrac{a_{n+1}}{a_n} = m\) (\(m\)常数)中\(a_{n+1}\)和\(a_n\)的“内涵”的理解。以下引例加深对等差数列中字母内涵的理解:
①\(\cfrac{1}{a_{n+1}}-\cfrac{1}{a_n} = m\),则数列\(\{\cfrac{1}{a_n}\}\)是首项为\(\cfrac{1}{a_1}\),公差为\(m\)的等差数列;
②\(\cfrac{1}{S_{n+1}}-\cfrac{1}{S_n} = m\),则数列\(\{\cfrac{1}{S_n}\}\)是首项为\(\cfrac{1}{a_1}\),公差为\(m\)的等差数列;
③\(\cfrac{a_{n+1}}{n+1}-\cfrac{a_n}{n} = m\),则数列\(\{\cfrac{a_n}{n}\}\)是首项为\(\cfrac{a_1}{1}\),公差为\(m\)的等差数列;
④\(\cfrac{n}{a_{n+1}+(n+1)}-\cfrac{n-1}{a_n+n} = m\),则数列\(\{\cfrac{n-1}{a_n+n}\}\)是首项为\(\cfrac{1-1}{a_1+1}\),公差为\(m\)的等差数列;
⑤\((a_{n+1}+(n+1))-(a_n + n) = m\), 则数列\(\{a_n+n\}\)是首项为\(a_1+1\),公差为\(m\)的等差数列;
⑥\(a_{n+1}^2-a_n^2 = m\),则数列\(\{a_n^2\}\)是首项为\(a_1^2\),公差为\(m\)的等差数列;
⑦\(log_m^\,{a_{n+1}^2}-log_m^\,{a_n^2} = p\),则数列\(\{log_m^\,{a_n^2}\}\)是首项为\(log_m^\,{a_1^2}\),公差为\(p\)的等差数列;
⑧\(a_{n+2}-2a_{n+1}=a_{n+1}-2a_n\),则数列\(\{a_{n+1}-2a_n\}\)是首项为\(a_2-2a_1\),公差为\(0\)的等差数列;
以上所列举的凡此种种,都是等差数列,能用一个表达式刻画吗?
\[a_{n+1}-a_n=d,d为常数\]
因此务必要求理解透彻\(a_{n+1}\)和\(a_n\)的“内涵”;籍此理解:代数,就是用字母代替数字来思维的一门学科。
以下引例用于加深对等比数列的字母内涵的理解:
①\(\cfrac{a_{n+1}+1}{a_n+1} = m\), 则数列\(\{a_n+1\}\)是首项为\(a_1+1\),公比为\(m\)的等比数列;
②\(\cfrac{a_{n+1}+(n+1)}{a_n + n} = m\),则数列\(\{a_n+n\}\)是首项为\(a_1+1\),公比为\(m\)的等比数列;
③\(\cfrac{a_{n+1}^2}{a_n^2} = m\),则数列\(\{a_n^2\}\)是首项为\(a_1^2\),公比为\(m\)的等比数列;
④\(a_{n+2}-a_{n+1}=2(a_{n+1}-a_n)\),则数列\(\{a_{n+1}-a_n\}\)是首项为\(a_2-a_1\),公比为\(2\)的等比数列;
⑤\(lga_{n+1}=2lga_n\),则数列\(\{lga_n\}\)是首项为\(lga_1\),公比为\(2\)的等比数列;
思路:两边同时加上常数\(k\),构造等比数列\(a_{n+1}+k=p(a_n+k)\)求解;其中\(k=\cfrac{q}{p-1}\);
思路:两边同时除以\(q^{n+1}\),得到\(\cfrac{a_{n+1}}{q^{n+1}}=\cfrac{p}{q}\cdot \cfrac{a_{n}}{q^{n}}+\cfrac{1}{q}\),即\(b_{n+1}=mb_n+h\),转化为上述类型①;
思路:两边同时取倒数,转化为类型①求解;
思路:构造等比数列,令\(a_{n+1}+x(n+1)+y=p(a_n+xn+y)\),利用两个多项式相等,对应系数相等求得\(x\)、\(y\),利用等比数列求解;
思路:两边同时取对数,构造等比数列求解;
思路:转化为\(a_{n+2}-sa_{n+1}=p(a_{n+1}-sa_n)\),其中\(\left\{\begin{array}{l}{s+t=p}\\{st=-q}\end{array}\right.\);
原文:https://www.cnblogs.com/wanghai0666/p/10604133.html