首页 > 其他 > 详细

汉诺塔问题

时间:2019-03-27 18:39:00      阅读:200      评论:0      收藏:0      [点我收藏+]

汉诺塔

汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?

技术分享图片

这是示意图,a是起始柱,c是目标柱,b起到中转作用

    在进行转移操作时,都必须确保大盘在小盘下面,且每次只能移动一个圆盘,最终c柱上有所有的盘子且也是从上到下按从小到大的顺序。

实现算法解释

def move(n, a, b, c):
    if n==1:
        print a,-->,c
        return
    else:
        move(n-1,a,c,b)  #首先需要把 (N-1) 个圆盘移动到 b
        move(1,a,b,c)    #将a的最后一个圆盘移动到c
        move(n-1,b,a,c)  #再将b的(N-1)个圆盘移动到c
move(4, A, B, C)

此函数就是先以c柱作为辅助柱,现将n-1个盘子转移到b柱上,然后将a盘上最后一个盘子移到c柱上,再以a柱为辅助柱将b上的盘子转到c柱上,这样就完成了。

动画实现

若要实现动画化,则需要借助turtle库。

因为动画的实现比较复杂,先将要用的函数封装

class Stack:
    def __init__(self):
        self.items = []
    def isEmpty(self):
        return len(self.items) == 0
    def push(self, item):
        self.items.append(item)
    def pop(self):
        return self.items.pop()
    def peek(self):
        if not self.isEmpty():
            return self.items[len(self.items) - 1]
    def size(self):
        return len(self.items)

画出汉诺塔的poles

def drawpole_3():#画出汉诺塔的poles
    t = turtle.Turtle()
    t.hideturtle()
    def drawpole_1(k):
        t.up()
        t.pensize(10)
        t.speed(100)
        t.goto(400*(k-1), 100)
        t.down()
        t.goto(400*(k-1), -100)
        t.goto(400*(k-1)-20, -100)
        t.goto(400*(k-1)+20, -100)
    drawpole_1(0)#画出汉诺塔的poles[0]
    drawpole_1(1)#画出汉诺塔的poles[1]
    drawpole_1(2)#画出汉诺塔的poles[2]

制造n个盘子

plates=[turtle.Turtle() for i in range(n)]
    for i in range(n):
        plates[i].up()
        plates[i].hideturtle()
        plates[i].shape("square")
        plates[i].shapesize(1,8-i)
        plates[i].goto(-400,-90+20*i)
        plates[i].showturtle()
    return plates

制造poles的栈

def pole_stack():#制造poles的栈
    poles=[Stack() for i in range(3)]
    return poles

把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]

def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
    mov=poles[fp].peek()
    plates[mov].goto((fp-1)*400,150)
    plates[mov].goto((tp-1)*400,150)
    l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
    plates[mov].goto((tp-1)*400,-90+20*l)

递归放盘子

def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
    if height >= 1:
        moveTower(plates,poles,height-1,fromPole,withPole,toPole)
        moveDisk(plates,poles,fromPole,toPole)
        poles[toPole].push(poles[fromPole].pop())
        moveTower(plates,poles,height-1,withPole,toPole,fromPole)

函数调用

myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
    poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()

程序运行后效果如下:

技术分享图片

 

汉诺塔问题

原文:https://www.cnblogs.com/0330lgs/p/10609355.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!