InputThe input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
OutputFor each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
题目大意
就给你n个箱子,输入每一个箱子的长宽高,每个箱子可以用无数次,要求你叠箱子,保证上一个箱子的长宽要小于
下面的箱子的长宽,注意不能等于,然后每个箱子的长宽高可以随意调换,问你最大的高度。
思路
先把数据做一次处理,每个箱子的放置可能性有6种,用结构体储存,然后通过长宽来排序,然后直接进行dp求最优。
代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 200
struct box
{
int l,w,h;
}boxs[maxn];
int dp[maxn];
bool cmp(box a,box b)
{
if(a.l==b.l)
return a.w<b.w;
return a.l<a.l;
}
int main()
{
int n,flag=1;
while(~scanf("%d",&n))
{
int len=0,a,b,c;
for(int i=0;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
boxs[len].h=a;
boxs[len].l=b;
boxs[len++].w=c;
boxs[len].h=b;
boxs[len].l=a;
boxs[len++].w=c;
boxs[len].h=a;
boxs[len].l=c;
boxs[len++].w=b;
boxs[len].h=b;
boxs[len].l=c;
boxs[len++].w=a;
boxs[len].h=c;
boxs[len].l=a;
boxs[len++].w=b;
boxs[len].h=c;
boxs[len].l=b;
boxs[len++].w=a;
}
sort(boxs,boxs+len,cmp);
dp[0]=boxs[0].h;
int max_h;
for(int i=1;i<len;i++)
{
max_h=0;
for(int j=0;j<i;j++)
{
if(boxs[i].l>boxs[j].l&&boxs[i].w>boxs[j].w)
max_h=max(max_h,dp[j]);
}
dp[i]=boxs[i].h+max_h;
}
max_h=0;
for(int i=0;i<len;i++)
{
max_h=max(max_h,dp[i]);
}
printf("%d\n",max_h);
}
return 0;
}
原文:https://www.cnblogs.com/tanwei-hq/p/10623421.html