首页 > 其他 > 详细

Activation Functions

时间:2019-03-29 20:05:12      阅读:119      评论:0      收藏:0      [点我收藏+]

Sigmoid

技术分享图片

Sigmoids saturate and kill gradients.

Sigmoid outputs are not zero-centered.

Exponential function is a little computational expensive.

 

Tanh

Kill gradients when saturated.

It‘s zero-centered! : )

 

技术分享图片

ReLU

Does not saturate. ( in positive region)

Very computational efficient.

Converges much faster than sigmoid/tanh in practice. (6 times)

Seems more biologically plausible than sigmoid.

BUT!

Not zero-centered.

No gradient when x<0.

 

Take care of learning rate when using ReLU.

 

技术分享图片

Leakly ReLU

Does not saturate.

Very computational efficient.

Converges much faster than sigmoid/tanh in practice. (6 times)

will not "die"

 

Parametric ReLU

技术分享图片

 

Exponential Linear Unit

技术分享图片

Activation Functions

原文:https://www.cnblogs.com/hizhaolei/p/10623472.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!