题目很简单:分析发现满足杨辉三角,有通项公式,但是是高精度,大数题目。
记录一个大数类模板:以后好用
代码:
#include<cstdio> #include<cstring> using namespace std; #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 class BigInt { private: int a[500]; int len; public: BigInt() {len = 1; memset(a, 0, sizeof(a));} BigInt(const int); BigInt(const char *); BigInt(const BigInt &); BigInt &operator = (const BigInt &); BigInt operator + (const BigInt &) const; BigInt operator - (const BigInt &) const; BigInt operator * (const BigInt &) const; BigInt operator / (const int &) const; bool operator > (const BigInt &T) const; bool operator < (const BigInt &T) const; bool operator == (const BigInt &T) const; bool operator > (const int &t) const; bool operator < (const int &t) const; bool operator == (const int &t) const; void print(); }; bool BigInt::operator == (const BigInt &T) const { return !(*this > T) && !(T > *this); } bool BigInt::operator == (const int &t) const { BigInt T = BigInt(t); return *this == T; } bool BigInt::operator < (const BigInt &T) const { return T > *this; } bool BigInt::operator < (const int &t) const { return BigInt(t) > *this; } BigInt::BigInt(const int b) { int c, d = b; len = 0; memset(a, 0, sizeof(a)); while(d > MAXN) { c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1); a[len++] = c; } a[len++] = d; } BigInt::BigInt(const char *s) { int t, k, index, l, i; memset(a, 0, sizeof(a)); l = strlen(s); len = l / DLEN; if(l % DLEN) len++; index = 0; for(i = l - 1; i >= 0; i -= DLEN) { t = 0; k = i - DLEN + 1; if(k < 0) k = 0; for(int j = k;j <= i; j++) t = t * 10 + s[j] - '0'; a[index++] = t; } } BigInt::BigInt(const BigInt &T) : len(T.len) { int i; memset(a, 0, sizeof(a)); for(i = 0; i < len; i++) a[i] = T.a[i]; } BigInt & BigInt::operator = (const BigInt &n) { int i; len = n.len; memset(a, 0, sizeof(a)); for(i = 0; i < len; i++) a[i] = n.a[i]; return *this; } BigInt BigInt::operator + (const BigInt &T) const{ BigInt t(*this); int i, big; big = T.len > len ? T.len : len; for(int i = 0; i < big; i++) { t.a[i] += T.a[i]; if(t.a[i] > MAXN) { t.a[i+1]++; t.a[i] -= MAXN + 1; } } if(t.a[big] != 0) t.len = big + 1; else t.len = big; return t; } BigInt BigInt::operator - (const BigInt &T) const { int i, j, big; bool flag; BigInt t1, t2; if(*this > T) { t1 = *this; t2 = T; flag = 0; } else { t1 = T; t2 = *this; flag = 1; } big = t1.len; for(i = 0; i < big; i++) { if(t1.a[i] < t2.a[i]) { j = i + 1; while(t1.a[j] == 0) j++; t1.a[j--]--; while(j > i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; } else t1.a[i] -= t2.a[i]; } t1.len = big; while(t1.a[t1.len - 1] == 0 && t1.len > 1) { t1.len--; big--; } if(flag) t1.a[big-1] = 0 - t1.a[big-1]; return t1; } BigInt BigInt::operator * (const BigInt &T) const { BigInt ret; int i, j, up; int tmp, temp; for(i = 0; i < len; i++) { up = 0; for(j = 0; j < T.len; j++) { temp = a[i] * T.a[j] + ret.a[i+j] + up; if(temp > MAXN) { tmp = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = tmp; } else { up = 0; ret.a[i + j] = temp; } } if(up != 0) ret.a[i + j] = up; } ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } BigInt BigInt::operator / (const int &b) const { BigInt ret; int i, down = 0; for(i = len - 1; i >= 0; i--) { ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; } ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } bool BigInt::operator > (const BigInt &T) const { int ln; if(len > T.len) return true; else if(len == T.len) { ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0) ln--; if(ln >= 0 && a[ln] > T.a[ln]) return true; else return false; } else return false; } bool BigInt::operator > (const int &t) const { BigInt b(t); return *this > b; } void BigInt::print() { printf("%d",a[len-1]); for(int i = len - 2; i >= 0; i--) printf("%04d", a[i]); printf("\n"); } int main() { int n, T, i, j, a[3005]; scanf("%d",&T); while(T--) { scanf("%d",&n); for(i = 1; i <= n; i++) scanf("%d",&a[i]); BigInt positive(0), negative(0), C(1), tmp; for(i = 0; i <= n - 1; i++) { if(i > 0) C = (C * (BigInt)(n - i)) / i; tmp = C * (BigInt)(a[n-i]); if(i&1) negative = negative + tmp; else positive = positive + tmp; } BigInt ans = positive - negative; ans.print(); } return 0; }
【大数类模板】hdoj 4927 Series 1,布布扣,bubuko.com
原文:http://blog.csdn.net/y990041769/article/details/38438689