首页 > 其他 > 详细

利用sklearn计算决定系数R2

时间:2019-04-09 16:38:12      阅读:807      评论:0      收藏:0      [点我收藏+]

技术分享图片

技术分享图片

 

技术分享图片

from sklearn.metrics import r2_score
 y_true = y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 r2_score(y_true, y_pred)
 # 结果:0.9486081370449679
 r2_score(y_true, y_pred, multioutput= uniform_average)
 # 结果:0.9486081370449679
 y_true = [[0.5, 1], [-1, 1], [7, -6]]
 y_pred = [[0, 2], [-1, 2], [8, -5]]
 r2_score(y_true, y_pred, multioutput=variance_weighted)
 # 结果:0.9382566585956417
 y_true = [1, 2, 3]
 y_pred = [1, 2, 3]
 r2_score(y_true, y_pred)
 # 结果: 1.0
 y_true = [1, 2, 3]
 y_pred = [2, 2, 2]
 r2_score(y_true, y_pred)
 # 结果:0.0
  y_true = [1, 2, 3] # bar{y} = (1+2+3)/ 3 = 2
  y_pred = [3, 2, 1] # y - hat{y}(即y_true - y_pred) = [-2, 0, 2]
  r2_score(y_true, y_pred)
  # 结果:-3.0
  y_true = [[0.5, 1], [-1, 1], [7, -6]]
  y_pred = [[0, 2], [-1, 2], [8, -5]]
  r2_score(y_true, y_pred, multioutput=raw_values)
  # 结果:array([0.96543779, 0.90816327])

 

利用sklearn计算决定系数R2

原文:https://www.cnblogs.com/jiangkejie/p/10677858.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!