http://spark.apache.org/docs/latest/submitting-applications.html
If your code depends on other projects, you will need to package them alongside your application in order to distribute the code to a Spark cluster. To do this, create an assembly jar (or “uber” jar) containing your code and its dependencies.
For Python, you can use the --py-files
argument of spark-submit
to add .py
, .zip
or .egg
files to be distributed with your application. If you depend on multiple Python files we recommend packaging them into a .zip
or .egg
.
For example:
zip -qr netflow.zip netflow-db/
./bin/spark-submit --class <main-class> --master <master-url> --deploy-mode <deploy-mode> --conf <key>=<value> ... # other options
<application-jar> [application-arguments]
Some of the commonly used options are:
--class
: The entry point for your application (e.g. org.apache.spark.examples.SparkPi
)--master
: The master URL for the cluster (e.g. spark://23.195.26.187:7077
)--deploy-mode
: Whether to deploy your driver on the worker nodes (cluster
) or locally as an external client (client
) (default: client
) †--conf
: Arbitrary Spark configuration property in key=value format. For values that contain spaces wrap “key=value” in quotes (as shown).application-jar
: Path to a bundled jar including your application and all dependencies. The URL must be globally visible inside of your cluster, for instance, an hdfs://
path or a file://
path that is present on all nodes.application-arguments
: Arguments passed to the main method of your main class, if any./bin/spark-submit --class spark.py --master spark://localhost:7077\ --deploy-mode cluster --py-files netflow.zip
For Python applications, simply pass a.py
file in the place of<application-jar>
instead of a JAR, and add Python.zip
,.egg
or.py
files to the search path with--py-files
.
# Run application locally on 8 cores ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master local[8] /path/to/examples.jar 100 # Run on a Spark standalone cluster in client deploy mode ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://207.184.161.138:7077 \ --executor-memory 20G --total-executor-cores 100 /path/to/examples.jar 1000 # Run on a Spark standalone cluster in cluster deploy mode with supervise ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://207.184.161.138:7077 \ --deploy-mode cluster --supervise --executor-memory 20G --total-executor-cores 100 /path/to/examples.jar 1000 # Run on a YARN cluster export HADOOP_CONF_DIR=XXX ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster \ # can be client for client mode --executor-memory 20G --num-executors 50 /path/to/examples.jar 1000 # Run a Python application on a Spark standalone cluster ./bin/spark-submit --master spark://207.184.161.138:7077 \ examples/src/main/python/pi.py 1000 # Run on a Mesos cluster in cluster deploy mode with supervise ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master mesos://207.184.161.138:7077 \ --deploy-mode cluster --supervise --executor-memory 20G --total-executor-cores 100 http://path/to/examples.jar \ 1000 # Run on a Kubernetes cluster in cluster deploy mode ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master k8s://xx.yy.zz.ww:443 \ --deploy-mode cluster --executor-memory 20G --num-executors 50 http://path/to/examples.jar \ 1000
4. result
Fuck: Cluster deploy mode is currently not supported for python applications on standalone clusters.
python code run on spark standalon mode
原文:https://www.cnblogs.com/waken-captain/p/10680378.html