~\(≧▽≦)/~啦啦啦,昨天说的是LCS,今天我们要学习的是LIS,什么是LIS呢?
LIS: 最长有序子序列(递增/递减/非递增/非递减)这么说还是有些模糊,举个例子:
在一个无序的序列a1,a2,.....,am里,找到一个最长的序列,满足ai<=aj...<=ak; 且i<j<k;
例如该无序子序列为a[1]=1,a[2]=4,a[3]=5,a[4]=2;则最长序列为1,4,5.
小盆友们是不是明白了什么是最长有序子序列了呢?下面我们说说怎么求最长有序子序列:
先来说说经典的求法吧:
设a[i]表示序列中的第i个数,f[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设f[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:f[i] = max{1, f[j] + 1} (j = 1, 2, ..., i - 1, 且a[j] < a[i])。
现在,我们仔细考虑计算f[i]时的情况。假设有两个元素a[x]和a[y],满足
(1)y < x < i
(2)a[x] <a[y] < a[i]
(3)f[x] = f[y]
此时,选择f[x]和选择f[y]都可以得到同样的f[i]值,那么,在最长上升子序列的这个位置中,应该选择a[x]还是应该选择a[y]呢?
很明显,选择a[x]比选择a[y]要好。因为由于条件a[x] < a[y] < a[i],在a[x+1] ~a[i-1]这一段中,如果存在a[z],a[x] < a[z] < a[y],则与选择a[y]相比,将会得到更长的上升子序列。
再根据条件f[x] = f[y],我们会得到一个启示:根据f[]的值进行分类。对于f[]的每一个取值k,我们只需要保留满足f[i] = k的所有a[i]中的最小值。设d[k]记录这个值,即d[k] = min{ a[i] } ( f[i] = k )。
特别关注D[]的几个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。//此处需要特别注意!!!关键之所在!
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断a[i]与D[len],若a[i] > D[len],则将a[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1,D[len+1] = a[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < a[i].令k = j + 1,则有D[j] < a[i] <= D[k],将a[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = a[i].最后,len即为所要求的最长上升子序列的长度。
在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步.但是由于D[]的特点a[x] <a[y] < a[i],我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高.需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列.
这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意.
1 // By Fandywang 2008.7.21 2 // Call: LIS(a, n); 求最大递增/上升子序列(如果为最大非降子序列,只需把上面的注释部分给与替换) 3 const int N = 1001; 4 int a[N], f[N], d[N]; // d[i]用于记录a[0...i]的最大长度 5 int bsearch(const int *f, int size, const int &a) 6 { 7 int l=0, r=size-1; 8 while( l <= r ) 9 { 10 int mid = (l+r)/2; 11 if( a > f[mid-1] && a <= f[mid] ) return mid; // >&&<= 换为: >= && < 12 else if( a < f[mid] ) r = mid-1; 13 else l = mid+1; 14 } 15 } 16 int LIS(const int *a, const int &n){ 17 int i, j, size = 1; 18 f[0] = a[0]; d[0] = 1; 19 for( i=1; i < n; ++i ){ 20 if( a[i] <= f[0] ) j = 0; // <= 换为: < 21 else if( a[i] > f[size-1] ) j = size++; // > 换为: >= 22 else j = bsearch(f, size, a[i]); 23 f[j] = a[i]; d[i] = j+1; 24 } 25 return size; 26 }
上面的算法多少有些繁琐,下面介绍另一种算法:
如果前i-1个数中的最长非降子序列的最后一个数是ak;那么下一步就是在求前k-1个数中的的最长非降子序列;
因此我们可以设计一个状态opt[j]表示前i个数中用到a[i]所构成的最优解。
那么决策就是在前i-1个数中找到最大的opt[j] 使得a[j]<=a[i],那么opt[j]+1 就是opt[i]的值;
方程可以这样表示:
max[opt[j]] a[i] < a[j] && 0<=j<i
opt[i] ={
max[opt[j]]+1 a[i] >= a[j] && 0<=j<i
1 #include <stdio.h> 2 3 #include <stdlib.h> 4 5 6 7 int main() 8 9 { 10 11 int seq[10] = {4,5,7,8,3,2,6,7,33,4}; 12 13 int opt[10], i, j, max = 0; 14 15 16 17 for(i=0; i<10; i++) 18 19 opt[i] = 0; 20 21 opt[0] = 1; //只有一个数时最长非降序列长度为1 22 23 24 25 for(i=1; i<10; i++) 26 27 { 28 29 opt[i] = 1; 30 31 for(j=0; j<i; j++) 32 33 { 34 35 if(seq[j]<=seq[i] && opt[j]+1>opt[i]) 36 37 { 38 39 opt[i] = opt[j]+1; 40 41 } 42 43 } 44 45 } 46 47 48 49 for(i=0; i<10; i++) 50 51 if(opt[i] > max) 52 53 max = opt[i]; 54 55 printf("max:%d\n", max); 56 57 return 0; 58 59 }
感谢:
http://www.cnblogs.com/dartagnan/archive/2011/08/29/2158230.html
http://hi.baidu.com/fandywang_jlu/item/da673a3d83e2a65980f1a7e1
LIS小结(O(∩_∩)O~哄哄),布布扣,bubuko.com
原文:http://www.cnblogs.com/PJQOOO/p/3899756.html