首页 > 其他 > 详细

MT【327】两道不等式题

时间:2019-04-11 21:12:26      阅读:96      评论:0      收藏:0      [点我收藏+]

当$x,y\ge0,x+y=2$时求下面式子的最小值:
1)$x+\sqrt{x^2-2x+y^2+1}$
2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$

技术分享图片
解:1)$P(x,y)$为直线$x+y=2$上一点,点$H$为$P$到$y$轴的投影点,

设$A(1,0)$则$A$关于$x+y=2$的对称点$A‘(2,1)$

故$x+\sqrt{x^2-2x+y^2+1}=|PH|+|PA|= |PH|+|PA‘|\ge|HA‘|=2$
2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$
$=\dfrac{1}{5}x+\sqrt{(x^2-2x+y^2+1)(\cos^2\theta+\sin^2\theta)}$
$\ge(\dfrac{1}{5}+\cos\theta)x+y\sin\theta-\cos\theta$
令$\cos\theta=\dfrac{3}{5},\sin\theta=\dfrac{4}{5}$则最小值为1

MT【327】两道不等式题

原文:https://www.cnblogs.com/mathstudy/p/10692188.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!