首页 > 其他 > 详细

luogu5290 春节十二响

时间:2019-04-11 21:15:37      阅读:157      评论:0      收藏:0      [点我收藏+]

题目链接

思路

先考虑一条链的情况怎么做。

因为只有两个子树,并且两个子树都是链。所以可以把这两条链找出来,然后\(sort\)一下。合并起来。

然后推广到树上

对于每一棵树都可以按照和上面同样的方法合并成一条链。

这样就可以\(O(n^2logn)\)做了。

考场上就想到这些。而且链的情况还忘了存档。。。

启发式合并

只要对于每个节点维护出一个堆,并且进行启发式合并。就可以达到\(O(nlogn)\)的复杂度了。

还是太菜了。。。

代码

/*
* @Author: wxyww
* @Date:   2019-04-11 20:14:14
* @Last Modified time: 2019-04-11 20:23:59
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 200000 + 100;
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
}
priority_queue<int>q[N];
vector<int>e[N];
int a[N],dy[N];
int tmp[N];
int merge(int x,int y) {
    if(q[x].size() < q[y].size()) swap(x,y);
    int js = 0;
    while(!q[y].empty()) {
        tmp[++js] = max(q[y].top(),q[x].top());
        q[y].pop();q[x].pop();
    }
    for(int i = 1;i <= js;++i) q[x].push(tmp[i]);
    return x;
}
void dfs(int u) {
    int k = e[u].size();
    dy[u] = u;
    for(int i = 0;i < k;++i) {
        int v = e[u][i];
        dfs(v);
        dy[u] = merge(dy[u],dy[v]);
    }
    q[dy[u]].push(a[u]);
}
int main() {
    int n = read();
    for(int i = 1;i <= n;++i) a[i] = read();
    for(int i = 2;i <= n;++i) e[read()].push_back(i);
    dfs(1);
    
    ll ans = 0;
    while(!q[dy[1]].empty()) {
        ans += q[dy[1]].top();q[dy[1]].pop();
    }
    cout<<ans;
    return 0;
}

luogu5290 春节十二响

原文:https://www.cnblogs.com/wxyww/p/luogu5290.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!