首页 > 其他 > 详细

Leetcode 1015. Smallest Integer Divisible by K

时间:2019-04-12 23:18:07      阅读:182      评论:0      收藏:0      [点我收藏+]

思路显然是暴力枚举.

但是两个问题:

1.当1的位数非常大时,模运算很费时间,会超时.

其实每次不用完全用‘11111...‘来%K,上一次的余数*10+1后再%K就行.

证明:

令f(n)=111111...(n个1);  

 g(n)=f(n)%K

 因为f(n)=f(n-1)*10+1

 所以f(n)%K=(f(n-1)*10+1)%K

 即g(n)=g(n-1)*10+1

 

2.枚举何时停止?

一种方法是可以设置一个大数,比如10的6次方,可以Accepted.

更精确的方法是:从1个1到K个1,如果这里都没有答案,后面也没了.

因为K的余数不包括0的话有K-1个,我们算了K个,K个里面没有0的话,里面必然至少有两个相等的(抽屉原理),而根据第一个问题所示,相邻的余数有关系,所以一相等之后就是重复循环这些数了,前面找不到后面也肯定没有了.例如K=6:

  • 1 % 6 = 1
  • 11 % 6 = 5
  • 111 % 6 = 3
  • 1111 % 6 = 1
  • 11111 % 6 = 5
  • 111111 % 6 = 3

 

class Solution:
    def smallestRepunitDivByK(self, K: int) -> int:
        if K % 2 == 0 or K % 5 == 0:
            return -1
        g = 0
        for i in range(1, K+1):
            g = (g * 10 + 1) % K
            if g == 0:
                return i
        return -1

 

Leetcode 1015. Smallest Integer Divisible by K

原文:https://www.cnblogs.com/zywscq/p/10699120.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!