0.从新闻url获取点击次数,并整理成函数
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# 获取点击次数 def clickCount(url): newsId = re.search( ‘/(\d+).html‘ , url).groups( 0 )[ 0 ] timeUrl = ‘http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80‘ . format (newsId) clickTime = re.findall( "\d+" ,requests.get(timeUrl).text.split( ‘;‘ )[ 3 ])[ 0 ] return clickTime #获取新闻时间 def newsDateTime(head): date = head[ 0 ][ 5 :] time = head[ 1 ] format = ‘%Y-%m-%d %H:%M:%S‘ return datetime.strptime(date + " " + time, format ) |
1.从新闻url获取新闻详情: 字典,anews
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#获取新闻信息 def anews(url): newsDetail = {} get = requests.get(url) get.encoding = ‘utf-8‘ soup = BeautifulSoup(get.text, ‘html.parser‘ ) newsDetail[ ‘title‘ ] = soup.select( ‘.show-title‘ )[ 0 ].text; # 新闻题目 head = soup.select( ‘.show-info‘ )[ 0 ].text.split() newsDetail[ ‘datetime‘ ] = newsDateTime(head) # 新闻时间 newsDetail[ ‘clickTime‘ ] = clickCount(url) # 点击次数 newsDetail[ ‘content‘ ] = soup.select( ‘.show-content‘ )[ 0 ].text # 点击内容 newsDetail[ ‘url‘ ] = url return newsDetail |
2.从列表页的url获取新闻url:列表append(字典) alist
1
2
3
4
5
6
7
8
9
10
11
|
#获取新闻列表页中的新闻url def alist(listUrl): get = requests.get(listUrl) get.encoding = ‘utf-8‘ soup = BeautifulSoup(get.text, ‘html.parser‘ ) newsList = [] for news in soup.select( ‘li‘ ): if len (news.select( ‘.news-list-title‘ ))> 0 : newsUrl = news.select( ‘a‘ )[ 0 ][ ‘href‘ ] newsList.append(newsUrl) return newsList |
3.生成所页列表页的url并获取全部新闻 :列表extend(列表) allnews
*每个同学爬学号尾数开始的10个列表页
1
2
3
4
5
6
7
|
#爬取64至74页的数据 url = [] for i in range ( 64 , 74 ): url.extend(alist( ‘http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html‘ . format (i))) allnews = []; for i in url: allnews.append(anews(i)) |
4.设置合理的爬取间隔
import time
import random
time.sleep(random.random()*3)
1
2
3
4
|
#设置合理的爬取间隔 for i in range ( 5 ): time.sleep(random.random() * 3 ) print (newsdf) |
5.用pandas做简单的数据处理并保存
保存到csv或excel文件
newsdf.to_csv(r‘F:\duym\爬虫\gzccnews.csv‘)
1
2
3
4
|
#保存文件 pd.Series(allnews) newsdf = pd.DataFrame(allnews) newsdf.to_csv( ‘news.csv‘ ,encoding = ‘utf-8‘ ) |
运行截图:
6.完整代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
import requests from bs4 import BeautifulSoup from datetime import datetime import re import sqlite3 import pandas as pd import time import pandas import random # 获取点击次数 def clickCount(url): newsId = re.search( ‘/(\d+).html‘ , url).groups( 0 )[ 0 ] timeUrl = ‘http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80‘ . format (newsId) clickTime = re.findall( "\d+" ,requests.get(timeUrl).text.split( ‘;‘ )[ 3 ])[ 0 ] return clickTime #获取新闻时间 def newsDateTime(head): date = head[ 0 ][ 5 :] time = head[ 1 ] format = ‘%Y-%m-%d %H:%M:%S‘ return datetime.strptime(date + " " + time, format ) #获取新闻信息 def anews(url): newsDetail = {} get = requests.get(url) get.encoding = ‘utf-8‘ soup = BeautifulSoup(get.text, ‘html.parser‘ ) newsDetail[ ‘title‘ ] = soup.select( ‘.show-title‘ )[ 0 ].text; # 新闻题目 head = soup.select( ‘.show-info‘ )[ 0 ].text.split() newsDetail[ ‘datetime‘ ] = newsDateTime(head) # 新闻时间 newsDetail[ ‘clickTime‘ ] = clickCount(url) # 点击次数 newsDetail[ ‘content‘ ] = soup.select( ‘.show-content‘ )[ 0 ].text # 点击内容 newsDetail[ ‘url‘ ] = url return newsDetail #获取新闻列表页中的新闻url def alist(listUrl): get = requests.get(listUrl) get.encoding = ‘utf-8‘ soup = BeautifulSoup(get.text, ‘html.parser‘ ) newsList = [] for news in soup.select( ‘li‘ ): if len (news.select( ‘.news-list-title‘ ))> 0 : newsUrl = news.select( ‘a‘ )[ 0 ][ ‘href‘ ] newsList.append(newsUrl) return newsList #爬取64至74页的数据 url = [] for i in range ( 64 , 74 ): url.extend(alist( ‘http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html‘ . format (i))) allnews = []; for i in url: allnews.append(anews(i)) #保存文件 pd.Series(allnews) newsdf = pd.DataFrame(allnews) newsdf.to_csv( ‘news.csv‘ ,encoding = ‘utf-8‘ ) #设置合理的爬取间隔 for i in range ( 5 ): time.sleep(random.random() * 3 ) print (newsdf) |
原文:https://www.cnblogs.com/GMUK/p/10713523.html