Problem Description:
??Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
??For example, given the following triangle
?[[2],
?[3,4],
?[6,5,7],
?[4,1,8,3]]
??The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).Note:
??Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
????看过刘汝佳的《算法竞赛入门经典》的同学对这道题应该都不陌生,因为这是那本书讲动规里面举的第一个案例,可能也是很多人第一次接触动规时候的启蒙题目。
????对于这种问题维度较低,且无需寻径的求最优解问题,直接推出递推方程:\(M(i,j) = min(M(i+1,j),M(i+1,j+1)) + v(i,j)\),然后在题目给出的数据上实现递推方程的搜索过程即可。
????一般这种问题都有自底向上和自顶向下两种递推式,上述的递推式是自底向上的形式。另外一种懒得想了。
//Solution
class Solution120 {
public int minimumTotal(List<List<Integer>> triangle) {
for(int i=triangle.size()-2; i>=0; i--) {
List<Integer> nc = triangle.get(i);
List<Integer> lc = triangle.get(i+1);
for(int j=0; j<nc.size(); j++) {
nc.set(j, nc.get(j)+(lc.get(j)<lc.get(j+1)?lc.get(j):lc.get(j+1)));
}
}
return triangle.get(0).get(0);
}
}
原文:https://www.cnblogs.com/hyj2357/p/10720708.html