1. 动态规划,使用一个数组保存当前的最大递增子序列长度,时间复杂度为O(N^2)
# include <iostream> # include <cstdlib> # include <climits> using namespace std; int longestsub(int a[],int n) { int *dis=(int *)malloc((n+1)*sizeof(int)); dis[0]=1; int i,j; for(i=0;i<n;i++) dis[i]=1; for(i=0;i<n;i++) { for(j=i-1;j>=0;j--) { if(a[i]>a[j]&&dis[i]<dis[j]+1) { dis[i]=dis[j]+1; } } } int ans=-1; for(i=0;i<n;i++) ans=max(ans,dis[i]); free(dis); return ans; } int main() { int a[5]={3,6,5,4,7}; cout<<longestsub2(a,5)<<endl; system("pause"); return 0; }
2.《编程之美》上提供了另外一种解法,使用数组b[len-1]表示长度为len时最后一个元素值,在这种解法中可以使用二分查找使得程序加速,时间复杂度变为O(N*logN)
# include <iostream> # include <cstdlib> # include <climits> using namespace std; int binsearch(int a[],int n,int target) //binarysearch { int low=0; int high=n-1; int mid; while(low<=high) { mid=(high-low)/2+low; if(a[mid]==target) return mid; else if(a[mid]<target) low=mid+1; else high=mid-1; } return low; } int longestsub2(int a[],int n) { int i=0; int len=1; int *b=(int *)malloc((n+1)*sizeof(int)); b[0]=a[0]; for(i=1;i<n;i++) { if(a[i]>b[len-1]) { b[len]=a[i]; len++; } else { int tmp=binsearch(a,n,a[i]); b[tmp]=a[i]; } } free(b); return len; } int main() { int a[5]={7,6,8,4,1}; cout<<longestsub2(a,5)<<endl; system("pause"); return 0; }
原文:http://blog.csdn.net/u011608357/article/details/38455323