This problem is so easy! Can you solve it?
You are given a sequence which contains n integers a1,a2……an, your task is to find how many pair(ai, aj)(i < j) that ai and aj is co-prime.
3 1 2 3
3
题意:给出n个正整数,求这n个数中有多少对互素的数。
分析:莫比乌斯反演。
此题中,设F(d)表示n个数中gcd为d的倍数的数有多少对,f(d)表示n个数中gcd恰好为d的数有多少对,
则F(d)=∑f(n) (n % d == 0)
f(d)=∑mu[n / d] * F(n) (n %d == 0)
上面两个式子是莫比乌斯反演中的式子。
所以要求互素的数有多少对,就是求f(1)。
而根据上面的式子可以得出f(1)=∑mu[n] * F(n)。
所以把mu[]求出来,枚举n就行了,其中mu[i]为i的莫比乌斯函数。
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAXN = 1e5 + 10; typedef long long LL; int cnt[MAXN], pri[MAXN], num[MAXN], pri_num, mu[MAXN], vis[MAXN], a[MAXN]; void mobius(int n) //筛法求莫比乌斯函数 { pri_num = 0; memset(vis, 0, sizeof(vis)); vis[1] = mu[1] = 1; for(int i = 2; i <= n; i++) { if(!vis[i]) { pri[pri_num++] = i; mu[i] = -1; } for(int j = 0; j < pri_num; j++) { if(i * pri[j] > n) break; vis[i*pri[j]] = 1; if(i % pri[j] == 0) { mu[i*pri[j]] = 0; break; } mu[i*pri[j]] = -mu[i]; } } } LL get(int x) { return (LL)x * (x-1) / 2; } int main() { mobius(100005); int n; while(~scanf("%d",&n)) { int mmax = 0; for(int i = 1; i <= n; i++) { scanf("%d",&a[i]); mmax = max(mmax, a[i]); } memset(cnt, 0, sizeof(cnt)); memset(num, 0, sizeof(num)); for(int i = 1; i <= n; i++) num[a[i]]++; for(int i = 1; i <= mmax; i++) for(int j = i; j <= mmax; j += i) cnt[i] += num[j]; LL ans = 0; for(int i = 1; i <= mmax; i++) ans += get(cnt[i]) * mu[i]; printf("%lld\n", ans); } return 0; }
NYOJ 1066 CO-PRIME(数论),布布扣,bubuko.com
原文:http://blog.csdn.net/lyhvoyage/article/details/38455415