首页 > 编程语言 > 详细

python解决上楼梯问题

时间:2019-04-25 21:51:09      阅读:208      评论:0      收藏:0      [点我收藏+]

假设一段楼梯共n(n>1)个台阶,小朋友一步最多能上3个台阶,那么小朋友上这段楼梯一共有多少种方法

(此为京东2016年笔试题目)

假设n为15,从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),
同理,第14个、13个、12个台阶都可以这样推算,从而得到公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,
第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法

 

代码如下

 

n = int(input())
a = 1
b = 2
c = 4
for i in range(n-3):
    c, b, a = a+b+c, c, b
print(c)

截图如下

技术分享图片

 

(来让小朋友把这些走法挨个走一遍......)

 

这里提一下上面的

c, b, a = a+b+c, c, b

这段代码的用法

这段代码是先计算右边的数值,先计算a + b + c

然后从右边开始先将b的值赋给a,再将c的值赋给b,最后将a + b + c的值赋给c

这段代码等价于

m = a + b +c

a = b

b = c

c = m

(其实我还是喜欢下面这样写,容易懂)

python解决上楼梯问题

原文:https://www.cnblogs.com/liuzhaowei/p/10770878.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!