首页 > 其他 > 详细

【easy】746. Min Cost Climbing Stairs 动态规划

时间:2019-04-26 10:12:27      阅读:134      评论:0      收藏:0      [点我收藏+]

On a staircase, the i-th step has some non-negative cost cost[i]assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

 

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

 

Note:

  1. cost will have a length in the range [2, 1000].
  2. Every cost[i] will be an integer in the range [0, 999].

 

方法一:正序

/**
     * @param cost 每一步所要花费的值
     * @return 到达顶部总共需要的值
     */
    public int minCostClimbingStairs(int[] cost) {
        int length = cost.length + 1;
        int[] dp = new int[length];
        dp[0] = 0;
        dp[1] = 0;
        for (int i = 2; i < length; i++) {
            dp[i] = Math.min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1]);
        }
        return dp[length - 1];
    }

  

方法二:倒序

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int f1 = 0, f2 = 0;
        for (int i=cost.size()-1; i>= 0; i--){
            int f0 = cost[i] + min(f1, f2);
            f2 = f1;
            f1 = f0;
        }
        return min(f1, f2);
    }
};

 

【easy】746. Min Cost Climbing Stairs 动态规划

原文:https://www.cnblogs.com/sherry-yang/p/10772154.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!