不难看出,这实际上就是一个点修改+区间修改+区间求和的题,所以直接上线段树,用线段树维护差分数组。
这个题目还有坑点就是要判断\(l,r\)的大小关系和\(r+1\)是否出界。
#include <bits/stdc++.h>
using namespace std;
const int N = 2e6 + 10;
int n, m, rt;
int a[N];
class tree {
public :
int sum, lazy;
int len;
} t[N << 2];
#define lson rt << 1
#define rson rt << 1 | 1
template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return;
}
void pushup(int rt) {
t[rt].sum = t[lson].sum + t[rson].sum;
}
void build(int l, int r, int rt) {
t[rt].len = r - l + 1;
if (l == r) return;
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
}
inline void pushdown(int rt) {
if (t[rt].lazy) {
t[lson].lazy += t[rt].lazy;
t[rson].lazy += t[rt].lazy;
t[lson].sum += t[lson].len * t[rt].lazy;
t[rson].sum += t[rson].len * t[rt].lazy;
t[rt].lazy = 0;
}
}
void update(int L, int R, int c, int l, int r, int rt) {
if (L <= l && r <= R) {
t[rt].sum += c * t[rt].len;
t[rt].lazy += c;
return;
}
pushdown(rt);
int m = (l + r) >> 1;
if (L <= m) update(L, R, c, l, m, lson);
if (R > m) update(L, R, c, m + 1, r, rson);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) return t[rt].sum;
pushdown(rt);
int m = (l + r) >> 1, ans = 0;
if (L <= m) ans += query(L, R, l, m, lson);
if (R > m) ans += query(L, R, m + 1, r, rson);
return ans;
}
main() {
read(n), read(m);
for (int i = 1; i <= n; ++i) read(a[i]);
build(1, n, 1);
for (int i = 1, opt, l ,r, k, d; i <= m; ++i) {
read(opt);
if (opt == 1) {
read(l), read(r), read(k), read(d);
update(l, l, k, 1, n, 1);
if (r > l) update(l + 1, r, d, 1, n, 1);
if (r != n) update(r + 1, r + 1, -(k + (r - l) * d), 1, n, 1);
} else {
read(k);
printf("%d\n", a[k] + query(1, k, 1, n, 1));
}
}
return 0;
}
原文:https://www.cnblogs.com/lykkk/p/10782298.html