题意:根据题目那个式子,构造一个序列,能生成相应字符串
思路:根据式子能构造出n个方程,一共解n个未知量,利用高斯消元去解,中间过程有取摸过程,所以遇到除法的时候要使用逆元去搞
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 105; int pow_mod(int x, int k, int mod) { int ans = 1; while (k) { if (k&1) ans = ans * x % mod; x = x * x % mod; k >>= 1; } return ans; } int inv(int a, int n) { return pow_mod(a, n - 2, n); } int t, p, n, A[N][N]; char str[N]; int hash(int c) { if (c == '*') return 0; return c - 'a' + 1; } void build() { for (int i = 0; i < n; i++) { A[i][n] = hash(str[i]); int tmp = 1; for (int j = 0; j < n; j++) { A[i][j] = tmp; tmp = tmp * (i + 1) % p; } } } void gauss() { for (int i = 0; i < n; i++) { int r; for (r = i; r < n; i++) if (A[r][i]) break; if (r == n) continue; for (int j = i; j <= n; j++) swap(A[r][j], A[i][j]); for (int j = 0; j < n; j++) { if (i == j) continue; if (A[j][i]) { int tmp = A[j][i] * inv(A[i][i], p) % p; for (int k = i; k <= n; k++) { A[j][k] = (((A[j][k] - tmp * A[i][k]) % p) + p) % p; } } } } for (int i = 0; i < n; i++) printf("%d%c", A[i][n] * inv(A[i][i], p) % p, i == n - 1 ? '\n' : ' '); } int main() { scanf("%d", &t); while (t--) { scanf("%d%s", &p, str); n = strlen(str); build(); gauss(); } return 0; }
UVA 1563 - SETI (高斯消元+逆元),布布扣,bubuko.com
原文:http://blog.csdn.net/accelerator_/article/details/38468451