平方数
Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other)
Total Submission(s) : 3 Accepted Submission(s) : 3
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Square number is very popular in ACM/ICPC. Now here is a problem about square number again.
Let‘s consider such a kind of number called K-Omitted-Square-Number(K-OSN). N is a K-OSN if:
(1) It is a square number.
(2) Its last digit is not 0.
(3) It‘s not less than 10^K.
(4) If its last K digits are omitted, it‘s still a square number.
Now, given an even number K, you have to find the largest K-OSN.
Input
There are multiple test cases in this problem.
The first line will contain a single positive integer T(T<=20) indicating the number of test cases. Each test case will be a single line containing an even number K(2<=K<=200).
Output
For each test case, print a single line containing the largest K-OSN. In case that it will be very large, you just need to print the number module 2009. If there are no K-OSN, or if the largest K-OSN doesn‘t exist, print "Oops!"(without
quotes).
Sample Input
Sample Output
Author
HYNU
//数学题: 假定 m=a*10^k/2+b (a,b未知) N=m*m=a*a*10^k+b*b+2*a*b*10^k/2
那么 b*b+2*a*b*10^k/2<10^k 因为要使m最大,那么b取最小,a取越大,所以b等于1 带入不等式然后对a取整就可以求得a,b。 a<(10^k-1)/(2*10^k/2)
但是我们可以发现,当k=2时,a=4 k=4 , a=49 k=6 a=499 ......所以我们可以构造出m,然后直接求出n.
#include<stdio.h>
const int MAXK=200; //最大的K
const int MODNUM=2009; //用于取模的数
int main()
{
int tn,i; //tn为数据组数
int k,ans; //题目输入的K
int digit[MAXK+10],dn; //用于存放答案的数组和数组的长度
scanf("%d",&tn);
while(tn--)
{
scanf("%d",&k);
dn=0; digit[++dn]=4; //根据规律来构造答案
for(i=1;i<k/2;i++) digit[++dn]=9;
for(i=1;i<k/2;i++) digit[++dn]=0;
digit[++dn]=1;
// for(i=1;i<=dn;i++)
//printf("%d ",digit[i]);
// printf("\n");
for(ans=0,i=1;i<=dn;i++) ans=(ans*10+digit[i])%MODNUM;
//printf("%d\n",ans);
ans=(ans*ans)%MODNUM;
printf("%d\n",ans);
}
return 0;
}
平方数,布布扣,bubuko.com
平方数
原文:http://blog.csdn.net/u012773338/article/details/38468243