这段时间由于在做K-means对文本进行处理,需要进行绘图,实验室编程大哥向我介绍了Bokeh来进行绘图,一直是根据自己的需求来进行对其探索,今儿个看到一篇博文,对Bokeh进行了详细的解说,做个笔记。
博文非常适合Bokeh的初级学者,原文链接如下:https://cloud.tencent.com/developer/article/1134383
Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了Bokeh如何将数据展示到一个Web浏览器上的流程。
Bokeh的优势:
- Bokeh允许你通过简单的指令就可以快速创建复杂的统计图,
- Bokeh提供到各种媒体,如HTML,Notebook文档和服务器的输出
- ·我们也可以将Bokeh可视化嵌入flask和django程序
- Bokeh可以转换写在其它库(如matplotlib, seaborn和ggplot)中的可视化
- ·Bokeh能灵活地将交互式应用、布局和不同样式选择用于可视化
用Bokeh实现可视化
Bokeh提供了强大而灵活的功能,使其操作简单并高度定制化。它为用户提供了多个可视化界面,如下图所示
- 图表(Charts):一个高级接口(high-level interface),用以简单快速地建立复杂的统计图表。
- 绘图(Plotting):一个中级接口(intermediate-level interface),以构建各种视觉符号为核心。
- 模块(Models):一个低级接口(low-level interface),为应用程序开发人员提供最大的灵活性。
The full list of sections for all the modules in Bokeh is accessible from the sidebar to the left. Listed below are a few selected sections that may be especially useful.
- bokeh.models
- Everything that comprises a Bokeh plot or application—tools, controls, glyphs, data sources—is a Bokeh Model. Bokeh models are configured by setting values their various properties. This large section has a reference for every Bokeh model, including information about every property of each model.
- bokeh.plotting
- The
bokeh.plotting
API is centered around the figure()
command, and the associated glyph functions such as circle()
, wedge()
, etc. This section has detailed information on these elements. - bokeh.layouts
- The simplest way to combine multiple Bokeh plots and controls in a single document is to use the layout functions such as
row()
, column()
, etc. from the bokeh.layouts
module. - bokeh.io
- Functions for controlling where and how Bokeh documents are saved or shown, such as
output_file()
, output_notebook()
, and others are in this module. - bokeh.palettes
- This section provides visual representations of all the palettes built into Bokeh.
- bokeh.settings
- All Bokeh-related environment variables, which can be used to control things like resources, minification, and log levels, are documented here.
Bokeh 学习
原文:https://www.cnblogs.com/sisi-science/p/10798142.html