python装饰器本质上就是一个函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外的功能,装饰器的返回值也是一个函数对象。
很多python初学者学到面向对象类和方法是一道大坎,那么python中的装饰器是你进入Python高级语法大门的一道坎。
假设你写了几个函数,有一天领导心血来潮说,你把每个函数的运行时长(结束时间-开始时间)统计下,作为一个python实习生的你可能会这样写
import time
def func_a():
print("hello")
time.sleep(0.5)
def func_b():
print("world")
time.sleep(0.8)
if __name__ == '__main__':
func_a()
func_b()
作为一个实习生的你,可能想到的解决办法如下
import time
def func_a():
start = time.time()
print("hello")
time.sleep(0.5)
end = time.time()
print("运行时长:%.4f 秒" % (end-start))
def func_b():
start = time.time()
print("world")
time.sleep(0.8)
end = time.time()
print("运行时长:%.4f 秒" % (end-start))
if __name__ == '__main__':
func_a()
func_b()
运行结果:
hello
运行时长:0.5009 秒
world
运行时长:0.8008 秒
上面的代码虽然满足了领导的要求,但是如果你写的函数很多的话,每个函数都这样去添加,会显得代码很臃肿,有很多重复代码。
有一天你边上的一个python老司机看了下你的代码,给你指了条路:装饰器
装饰器可以写成函数式装饰器,也可以写成一个类装饰器,先从简单的函数装饰器开始学习。
python装饰器本质上就是一个函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外的功能,装饰器的返回值也是一个函数对象。
runtime函数就是一个装饰器了,它对原函数做了包装并返回了另外一个函数,额外添加了一些功能。在函数上方使用@语法糖就可以调用这个装饰器了
import time
def runtime(func):
def wrapper():
start = time.time()
f = func() # 原函数
end = time.time()
print("运行时长:%.4f 秒" % (end-start))
return f
return wrapper
@runtime
def func_a():
print("hello")
time.sleep(0.5)
@runtime
def func_b():
print("world")
time.sleep(0.8)
if __name__ == '__main__':
func_a()
func_b()
运行结果
hello
运行时长:0.5001 秒
world
运行时长:0.8001 秒
上面的runtime就是一个简单的装饰器模型了,但并不强壮,如果函数里面带有参数,那就不管用了,并且函数的参数是不固定的,这时候就需要用到*args
,**kwargs
两兄弟了
import time
def runtime(func):
def wrapper(*args, **kwargs):
start = time.time()
f = func(*args, **kwargs) # 原函数
end = time.time()
print("运行时长:%.4f 秒" % (end-start))
return f
return wrapper
@runtime
def func_a(a):
print("hello"+a)
time.sleep(0.5)
@runtime
def func_b(b, c="xx"):
print("world"+b+c)
time.sleep(0.8)
if __name__ == '__main__':
func_a("a")
func_b("b", c="xxx")
关于__call__
方法,不得不先提到一个概念,就是可调用对象(callable),我们平时自定义的函数、内置函数和类都属于可调用对象,
但凡是可以把一对括号()应用到某个对象身上都可称之为可调用对象,判断对象是否为可调用对象可以用函数 callable。
如果在类中实现了__call__
方法,那么实例对象也将成为一个可调用对象
import time
class runtime(object):
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
start = time.time()
f = self.func(*args, **kwargs) # 原函数
end = time.time()
print("运行时长:%.4f 秒" % (end-start))
return f
@runtime
def func_a(a):
print("hello"+a)
time.sleep(0.5)
@runtime
def func_b(b, c="xx"):
print("world"+b+c)
time.sleep(0.8)
if __name__ == '__main__':
func_a("a")
func_b("b", c="xxx")
快到年底了,领导说运行的速度先不要太快了,让客户先加钱,然后再以正常的速度显示,那么现在的需求是让每个函数的运行时间加50%,该如何实现呢?
这就到了装饰器的高级语法,装饰器也需要带上参数了
import time
def runtime(slowly=1):
def wrapper(func):
def inner_wrapper(*args, **kwargs):
start = time.time()
f = func(*args, **kwargs) # 原函数
end = time.time()
t = end-start
time.sleep((slowly-1)*t) # 延迟效果
new_end = time.time()
print("运行时长:%.4f 秒" % (new_end-start))
return f
return inner_wrapper
return wrapper
@runtime(1.5)
def func_a(a):
print("hello"+a)
time.sleep(0.5)
@runtime(1.5)
def func_b(b, c="xx"):
print("world"+b+c)
time.sleep(0.8)
if __name__ == '__main__':
func_a("a")
func_b("b", c="xxx")
import time
class runtime(object):
def __init__(self, slowly=1):
self.slowly = slowly
def __call__(self, func):
def wrapper(*args, **kwargs):
start = time.time()
f = func(*args, **kwargs) # 原函数
end = time.time()
t = end-start
time.sleep((self.slowly-1)*t) # 延迟效果
new_end = time.time()
print("运行时长:%.4f 秒" % (new_end-start))
return f
return wrapper
@runtime(1.5)
def func_a(a):
print("hello"+a)
time.sleep(0.5)
@runtime(1.5)
def func_b(b, c="xx"):
print("world"+b+c)
time.sleep(0.8)
if __name__ == '__main__':
func_a("a")
func_b("b", c="xxx")
用哪些地方需要使用装饰器呢?
@task(1)
,@pytest.fixture(scope="function")
@allure.step(‘修改购物车‘)
@login_required
原文:https://www.cnblogs.com/yoyoketang/p/10801242.html