Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(2.4)
Let $\mathcal{K}_1,~\mathcal{K}_2,\cdots,~\mathcal{K}_r$ be the conjugacy classes of a group $G$. Let $K_i=\sum_{x\in\mathcal{K}_i}x\in\mathbb{C}[G]$. Then the $K_i$ form a basis for $\mathbf{Z}(\mathbb{C}[G])$ and if $K_iK_j=\sum a_{ijv}K_v$, then the multiplication constants $a_{ijv}$ are nonnegative integers.
Pf:
原文:https://www.cnblogs.com/zhengtao1992/p/10803528.html