题意:n种零件, 给定m个制作时间,每段时间制作k个零件,每种零件有一个制作时间,每段时间用Mon到Sun表示,求每个零件的制作时间,还要判断一下多解和无解的情况
思路:对于每段时间列出一个方程,这样一共列出m个方程解n个变元,利用高斯消元去求解,注意每个方程都是MOD 7的,所以在高斯消元过程中遇到除法要求该数字%7的逆元去进行运算
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 305; char week[7][5] = {"MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"}; int n, m, k, A[N][N], cnt[N]; char day1[5], day2[5]; int find(char *day) { for (int i = 0; i < 7; i++) if (strcmp(week[i], day) == 0) return i; } int inv(int x) { int ans = 1; for (int i = 0; i < 5; i++) ans = ans * x % 7; return ans; } void build() { for (int i = 0; i < m; i++) { scanf("%d%s%s", &k, day1, day2); A[i][n] = (find(day2) - find(day1) + 8) % 7; int tmp; memset(cnt, 0, sizeof(cnt)); while (k--) { scanf("%d", &tmp); cnt[tmp]++; } for (int j = 1; j <= n; j++) A[i][j - 1] = cnt[j] % 7; } } int gauss() { int i = 0, j = 0; while (i < m && j < n) { int r; for (r = i; r < m; r++) if (A[r][j]) break; if (r == m) { j++; continue; } for (int k = j; k <= n; k++) swap(A[r][k], A[i][k]); for (int k = 0; k < m; k++) { if (i == k) continue; if (A[k][j]) { int tmp = A[k][j] * inv(A[i][j]) % 7; for (int x = j; x <= n; x++) A[k][x] = ((A[k][x] - tmp * A[i][x]) % 7 + 7) % 7; } } i++; } for (int k = i; k < m; k++) if (A[k][n]) return 2; if (i < n) return 1; for (int i = 0; i < n; i++) { int ans = A[i][n] * inv(A[i][i]) % 7; if (ans < 3) ans += 7; printf("%d%c", ans, i == n - 1 ? '\n' : ' '); } return 0; } void solve() { int tmp = gauss(); if (tmp == 1) printf("Multiple solutions.\n"); else if (tmp == 2) printf("Inconsistent data.\n"); } int main() { while (~scanf("%d%d", &n, &m) && n) { build(); solve(); } return 0; }
UVA 1564 - Widget Factory(高斯消元),布布扣,bubuko.com
UVA 1564 - Widget Factory(高斯消元)
原文:http://blog.csdn.net/accelerator_/article/details/38471581