import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): ‘‘‘ 随机调整图片的色彩,定义两种处理顺序。 ‘‘‘ if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) return tf.clip_by_value(image, 0.0, 1.0) def preprocess_for_train(image, height, width, bbox): # 查看是否存在标注框。 if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 随机的截取图片中一个块。 bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox) bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox) distorted_image = tf.slice(image, bbox_begin, bbox_size) # 将随机截取的图片调整为神经网络输入层的大小。 distorted_image = tf.image.resize_images(distorted_image, [height, width], method=np.random.randint(4)) distorted_image = tf.image.random_flip_left_right(distorted_image) distorted_image = distort_color(distorted_image, np.random.randint(2)) return distorted_image def pre_main(img,bbox=None): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) with tf.gfile.FastGFile(img, "rb") as f: image_raw_data = f.read() with tf.Session() as sess: img_data = tf.image.decode_jpeg(image_raw_data) for i in range(9): result = preprocess_for_train(img_data, 299, 299, bbox) plt.imshow(result.eval()) plt.axis(‘off‘) plt.savefig("E:\\myresource\\代号{}".format(i)) pre_main("E:\\myresource\\moutance.jpg",bbox=None) exit()
吴裕雄 python 机器学习——神经网络TensorFlow图片预处理调整图片
原文:https://www.cnblogs.com/tszr/p/10821705.html