复数相加:向量相加,复数相乘。复数相乘:模长相乘,旋转量相加(就是复平面坐标轴逆时针旋转的角度)
(当然也可以直接使用complex类,.real()即取实数部分)
主n次单位根:\(w_n=e^{2\pi i/n}\)
n个n次单位复数根可以用\(w_n^0,w_n^1,...,w_n^{n-1}\)
设a,p是整数,a和p互素,那么:
使\(a^n\equiv1\pmod p\)成立的最小正整数n叫做a模p的阶。
原根,是一个数学符号。设m是正整数,a是整数,若a模m的阶等于\(\phi\)(m),则称a为模m的一个原根。
对于m的情况最为常用。在这种情况下,0~m-1中每一个数都可以对应一个\(a^x\),这就相当于模意义下取对数(离散对数)。我们可以化乘为加。或者快速地计算一个数的若干次幂。
即判断是否不存在\(1<=x<\phi(m)\)。由于\(a^{\phi(m)}\equiv \pmod m\),我们只需要判断x为\(\phi(m)\)的因数的情况就可以了,时间复杂度\(O(sqrt(m)log m)\)
实际上,对于\(\phi(m)\)的每种质因数p_i判断\(\frac{\phi(m)}{p_i}\)也是等价的。
求出原根后,用暴力或者BSGS就可以求出来一个数的对数。
ps.一个数的原根是很多的,我们可以从小到大判断,或者随机化选取数字判断。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define MAXN 2700010
using namespace std;
int n,m,cnt;
int r[MAXN];
const double PI=acos(-1.0);
struct complex
{
double x,y;
complex(double xx=0,double yy=0){x=xx,y=yy;}
}a[MAXN],b[MAXN];
complex operator +(complex a,complex b){return complex(a.x+b.x,a.y+b.y);}
complex operator -(complex a,complex b){return complex(a.x-b.x,a.y-b.y);}
complex operator *(complex a,complex b){return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
inline void fft(complex *p,int opt)
{
for(int i=0;i<n;i++) if(i<r[i]) swap(p[i],p[r[i]]);
for(int i=1;i<n;i<<=1)
{
complex W=complex(cos(PI/i),opt*sin(PI/i));
for(int r=i<<1,j=0;j<n;j+=r)
{
complex w(1,0);
for(int k=0;k<i;k++,w=w*W)
{
complex X=p[j+k],Y=w*p[j+i+k];
p[j+k]=X+Y;
p[j+i+k]=X-Y;
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i]);
for(int i=0;i<=m;i++) scanf("%lf",&b[i]);
m+=n;
for(n=1;n<=m;n<<=1) ++cnt;
for(int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(cnt-1));
fft(a,1);
fft(b,1);
for(int i=0;i<=n;i++) a[i]=a[i]*b[i];
fft(a,-1);
for(int i=0;i<=m;i++) printf("%d ",(int)(a[i].x/n+0.5));
return 0;
}
原文:https://www.cnblogs.com/fengxunling/p/10830955.html