原文:http://www.cnblogs.com/skywang12345/p/3610390.html
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
二叉堆一般都通过"数组"来实现,下面是数组实现的最大堆和最小堆的示意图:
图文解析是以"最大堆"来进行介绍的。
最大堆的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍,其它内容请参考后面的完整源码。
1. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
最大堆的插入代码
/* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void FilterUp(int start) { int c = start; // 当前节点(current)的位置 int p = (c - 1) / 2; // 父(parent)结点的位置 T tmp = mHeap[c]; // 当前节点(current)的大小 while (c > 0) { int cmp = mHeap[p].CompareTo(tmp); if (cmp >= 0) break; else { mHeap[c] = mHeap[p]; c = p; p = (p - 1) / 2; } } mHeap[c] = tmp; } /* * 将data插入到二叉堆中 */ public void Insert(T data) { int size = mHeap.Count(); mHeap.Add(data); // 将"数组"插在表尾 FilterUp(size); // 向上调整堆 }
insert(data)的作用:将数据data添加到最大堆中。mHeap是动态数组ArrayList对象。
当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
2. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
二叉堆的删除代码
/* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ public void FilterDown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2 * c + 1; // 左(left)孩子的位置 var tmp = mHeap[c]; // 当前(current)节点的大小 while (l <= end) { int cmp = mHeap[l].CompareTo(mHeap[l + 1]); // "l"是左孩子,"l+1"是右孩子 if (l < end && cmp < 0) l++; // 左右两孩子中选择较大者,即mHeap[l+1] cmp = tmp.CompareTo(mHeap[l]); if (cmp >= 0) break; //调整结束 else { mHeap[c] = mHeap[l]; c = l; l = 2 * l + 1; } } mHeap[c] = tmp; } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ public int Remove(T data) { // 如果"堆"已空,则返回-1 if (mHeap.Count == 0) return -1; // 获取data在数组中的索引 int index = mHeap.IndexOf(data); ; if (index == -1) return -1; int size = mHeap.Count(); mHeap[index] = mHeap[size - 1];// 用最后元素填补 mHeap.RemoveAt(size - 1); // 删除最后的元素 if (mHeap.Count() > 1) FilterDown(index, mHeap.Count() - 1); // 从index号位置开始自上向下调整为最小堆 return 0; }
二叉堆的实现同时包含了"最大堆"和"最小堆"。
二叉堆(最大堆)的实现文件(MaxHeap)
/// <summary> /// 二叉堆(最大堆) /// </summary> /// <typeparam name="T"></typeparam> public class MaxHeap<T> where T : IComparable<T> { private List<T> mHeap;// 队列(实际上是动态数组ArrayList的实例) public MaxHeap() { this.mHeap = new List<T>(); } public int CompareTo(T other, T other1) { return other.CompareTo(other1); } /* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ public void FilterDown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2 * c + 1; // 左(left)孩子的位置 var tmp = mHeap[c]; // 当前(current)节点的大小 while (l <= end) { int cmp = mHeap[l].CompareTo(mHeap[l + 1]); // "l"是左孩子,"l+1"是右孩子 if (l < end && cmp < 0) l++; // 左右两孩子中选择较大者,即mHeap[l+1] cmp = tmp.CompareTo(mHeap[l]); if (cmp >= 0) break; //调整结束 else { mHeap[c] = mHeap[l]; c = l; l = 2 * l + 1; } } mHeap[c] = tmp; } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ public int Remove(T data) { // 如果"堆"已空,则返回-1 if (mHeap.Count == 0) return -1; // 获取data在数组中的索引 int index = mHeap.IndexOf(data); ; if (index == -1) return -1; int size = mHeap.Count(); mHeap[index] = mHeap[size - 1];// 用最后元素填补 mHeap.RemoveAt(size - 1); // 删除最后的元素 if (mHeap.Count() > 1) FilterDown(index, mHeap.Count() - 1); // 从index号位置开始自上向下调整为最小堆 return 0; } /* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void FilterUp(int start) { int c = start; // 当前节点(current)的位置 int p = (c - 1) / 2; // 父(parent)结点的位置 T tmp = mHeap[c]; // 当前节点(current)的大小 while (c > 0) { int cmp = mHeap[p].CompareTo(tmp); if (cmp >= 0) break; else { mHeap[c] = mHeap[p]; c = p; p = (p - 1) / 2; } } mHeap[c] = tmp; } /* * 将data插入到二叉堆中 */ public void Insert(T data) { int size = mHeap.Count(); mHeap.Add(data); // 将"数组"插在表尾 FilterUp(size); // 向上调整堆 } public override string ToString() { StringBuilder sb = new StringBuilder(); for (int i = 0; i < mHeap.Count(); i++) sb.Append(mHeap[i] + " "); return sb.ToString(); } public void test() { int i; int[] a = { 10, 40, 30, 60, 90, 70, 20, 50, 80 }; MaxHeap<int> tree = new MaxHeap<int>(); Console.WriteLine("== 依次添加: "); for (i = 0; i < a.Length; i++) { Console.Write("{0} ", a[i]); tree.Insert(a[i]); } Console.WriteLine("\n== 最 大 堆: {0}", tree); i = 85; tree.Insert(i); Console.WriteLine("\n== 添加元素: {0}", i); Console.WriteLine("\n== 最 大 堆: {0}", tree); i = 90; tree.Remove(i); Console.WriteLine("\n== 删除元素: {0}", i); Console.WriteLine("\n== 最 大 堆: {0}", tree); Console.WriteLine("\n"); } }
二叉堆(最小堆)的实现文件(MinHeap)
public class MinHeap<T> where T : IComparable<T> { private List<T> mHeap; // 存放堆的数组 public MinHeap() { this.mHeap = new List<T>(); } /* * 最小堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ protected void FilterDown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2 * c + 1; // 左(left)孩子的位置 T tmp = mHeap[c]; // 当前(current)节点的大小 while (l <= end) { int cmp = mHeap[l].CompareTo(mHeap[l + 1]); // "l"是左孩子,"l+1"是右孩子 if (l < end && cmp > 0) l++; // 左右两孩子中选择较小者,即mHeap[l+1] cmp = tmp.CompareTo(mHeap[l]); if (cmp <= 0) break; //调整结束 else { mHeap[c] = mHeap[l]; c = l; l = 2 * l + 1; } } mHeap[c] = tmp; } /* * 最小堆的删除 * * 返回值: * 成功,返回被删除的值 * 失败,返回null */ public int Remove(T data) { // 如果"堆"已空,则返回-1 if (mHeap.Count == 0) return -1; // 获取data在数组中的索引 int index = mHeap.IndexOf(data); if (index == -1) return -1; int size = mHeap.Count; mHeap[index] = mHeap[size - 1];// 用最后元素填补 mHeap.RemoveAt(size - 1); // 删除最后的元素 if (mHeap.Count > 1) FilterDown(index, mHeap.Count - 1); // 从index号位置开始自上向下调整为最小堆 return 0; } /* * 最小堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ protected void FilterUp(int start) { int c = start; // 当前节点(current)的位置 int p = (c - 1) / 2; // 父(parent)结点的位置 T tmp = mHeap[c]; // 当前节点(current)的大小 while (c > 0) { int cmp = mHeap[p].CompareTo(tmp); if (cmp <= 0) break; else { mHeap[c] = mHeap[p]; c = p; p = (p - 1) / 2; } } mHeap[c] = tmp; } /* * 将data插入到二叉堆中 */ public void Insert(T data) { int size = mHeap.Count; mHeap.Add(data); // 将"数组"插在表尾 FilterUp(size); // 向上调整堆 } public override string ToString() { StringBuilder sb = new StringBuilder(); for (int i = 0; i < mHeap.Count; i++) sb.Append(mHeap[i] + " "); return sb.ToString(); } public void test() { int i; int[] a = { 80, 40, 30, 60, 90, 70, 10, 50, 20 }; MinHeap<int> tree = new MinHeap<int>(); Console.WriteLine("== 依次添加: "); for (i = 0; i < a.Length; i++) { Console.Write("{0} ", a[i]); tree.Insert(a[i]); } Console.WriteLine("\n== 最 小 堆: {0}", tree); i = 15; tree.Insert(i); Console.WriteLine("\n== 添加元素: {0}", i); Console.WriteLine("\n== 最 小 堆: {0}", tree); i = 10; tree.Remove(i); Console.WriteLine("\n== 删除元素: {0}", i); Console.WriteLine("\n== 最 小 堆: {0}", tree); Console.WriteLine("\n"); } }
测试程序已经包含在相应的实现文件中了,这里只说明运行结果。
最大堆(MaxHeap)的运行结果:
== 依次添加: 10 40 30 60 90 70 20 50 80 == 最 大 堆: 90 80 70 60 40 30 20 10 50 == 添加元素: 85 == 最 大 堆: 90 85 70 60 80 30 20 10 50 40 == 删除元素: 90 == 最 大 堆: 85 80 70 60 40 30 20 10 50
最小堆(MinHeap)的运行结果:
== 最 小 堆: 10 20 30 50 90 70 40 80 60 == 添加元素: 15 == 最 小 堆: 10 15 30 50 20 70 40 80 60 90 == 删除元素: 10 == 最 小 堆: 15 20 30 50 90 70 40 80 60
原文:https://www.cnblogs.com/luanxm/p/10841783.html