首页 > 其他 > 详细

Problem(1.1)

时间:2019-05-10 14:13:51      阅读:119      评论:0      收藏:0      [点我收藏+]

Let $V$ be an $A$-module. Show that $V$ is completely reducible iff the intersection of all of the maximal submodules of $V$ is trivial. However, this is not valid for the regular module of the ring of integers $\mathbb{Z}$.

Pf:

The necessity is obviously. Now we consider the sufficiency:

  • $\cap_{i=1}^k M_i=0$ where the $M_i$ are maximal submodules of $V$.
  • $N_i=\sum_{i\neq j}M_j$ where the $N_i$ is the irreducible submodule of $V$
  • $V=M_i\oplus N_i$, then we have $V=V/(\cap M_i)\leq\oplus_i V/{M_i}=\oplus_i N_i$
  • Show $\sum N_i=\oplus N_i$.

Problem(1.1)

原文:https://www.cnblogs.com/zhengtao1992/p/10844035.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!