首页 > Web开发 > 详细

apache mxnet 深度学习神经网络小试

时间:2019-05-11 22:05:55      阅读:126      评论:0      收藏:0      [点我收藏+]

http://mxnet.incubator.apache.org/versions/master/install/index.html?platform=Windows&language=R&processor=CPU

1 cran <- getOption("repos")
2 cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/"
3 options(repos = cran)
4 install.packages("mxnet")

安装之前需要指定repository

一起安装的包

package ‘brew’ successfully unpacked and MD5 sums checked
package ‘hms’ successfully unpacked and MD5 sums checked
package ‘clipr’ successfully unpacked and MD5 sums checked
package ‘XML’ successfully unpacked and MD5 sums checked
package ‘Rook’ successfully unpacked and MD5 sums checked
package ‘downloader’ successfully unpacked and MD5 sums checked
package ‘igraph’ successfully unpacked and MD5 sums checked
package ‘influenceR’ successfully unpacked and MD5 sums checked
package ‘readr’ successfully unpacked and MD5 sums checked
package ‘rgexf’ successfully unpacked and MD5 sums checked
package ‘DiagrammeR’ successfully unpacked and MD5 sums checked
package ‘visNetwork’ successfully unpacked and MD5 sums checked
package ‘mxnet’ successfully unpacked and MD5 sums checked

额外的依赖

To run MXNet you also should have OpenCV and OpenBLAS installed.

第一步:数据准备

1 set.seed(0)
2 #随机分配训练集和测试集
3 train.ind = sample(1:nrow(inp), size=ceiling(0.7*nrow(inp)))
4 
5 train.x = data.matrix(inp[train.ind,NIRDATA])
6 train.y = inp[train.ind,NIC]
7 test.x = data.matrix(inp[-train.ind,NIRDATA])
8 test.y = inp[-train.ind,NIC]

第二步:创建网络并训练

1 mx.set.seed(0)
2 
3 model <- mx.mlp(train.x, train.y, hidden_node=c(7), out_node=1, out_activation="rmse",
4                 num.round=2000, array.batch.size=15, learning.rate=0.05, momentum=0.9,
5                 eval.metric=mx.metric.rmse)

hidden_node接受向量,c(100,50)代表两层隐含层,分别具有100和50个节点

out_node输出层

eval.metric=mx.metric.rmse
评估方法,rmse 标准差
评估测试集
predict(model,test.x)->prd

plot(prd,test.y)

 

apache mxnet 深度学习神经网络小试

原文:https://www.cnblogs.com/qianheng/p/10850162.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!