Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n =12
Output: 3 Explanation:12 = 4 + 4 + 4.
Example 2:
Input: n =13
Output: 2 Explanation:13 = 4 + 9.
题目大意:
求解一个数最少能被多少个完全立方数相加得到。
解法:
使用动态规划的方法,dp[i]代表的是i最少能被多少个完全立方数相加得到,找到规律如下:
dp[0] = 0 dp[1] = dp[0]+1 = 1 dp[2] = dp[1]+1 = 2 dp[3] = dp[2]+1 = 3 dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 } = Min{ dp[3]+1, dp[0]+1 } = 1 dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 } = Min{ dp[4]+1, dp[1]+1 } = 2 . . . dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 } = Min{ dp[12]+1, dp[9]+1, dp[4]+1 } = 2 . . . dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
java:
class Solution { public int numSquares(int n) { int[] dp=new int[n+1]; Arrays.fill(dp,Integer.MAX_VALUE); dp[0]=0; for(int i=1;i<=n;i++){ int j=1; while(i-j*j>=0){ dp[i]=Math.min(dp[i-j*j]+1,dp[i]); j++; } } return dp[n]; } }
原文:https://www.cnblogs.com/xiaobaituyun/p/10854252.html