传送门:http://bailian.openjudge.cn/practice/2528?lang=en_US
//http://poj.org/problem?id=2528
给你n长海报,每张海报在墙上贴的区间范围是l,r
问你这n张海报贴完后,可以看见的海报数量是多少
离散化+线段树
因为l,r的数据范围是1e7,而题目只给了64MB的空间,直接存的话空间会炸掉,所以需用用到离散化的技巧
然后按照端点单点更新即可
现在重新写这题发现这个题坑点在于每一个点他都代表一个长度为1的东东,所以我们普通的离散话会出问题
1-10 1-4 5-10
1-10 1-4 6-10
譬如 如上这组例子
所以我们离散化时做一下优化, 如果相邻间数字间距大于1时我们就在其中加上任意一个数字
这样离散话下来后做线段树就可以过
这组数据
3
5 6
4 5
6 8
3
1 10
1 3
6 10
5
1 4
2 6
8 10
3 4
7 10
这组数据
答案是3,3,4
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3;
struct node {
int l, r;
} q[maxn];
int col[maxn];
int vis[maxn];
int ans;
void push_down(int rt) {
if(col[rt] != -1) {
col[ls] = col[rs] = col[rt];
col[rt] = -1;
}
return;
}
void update(int L, int R, int c, int l, int r, int rt) {
if(L <= l && r <= R) {
col[rt] = c;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(L <= mid) update(L, R, c, lson);
if(R > mid) update(L, R, c, rson);
}
void query(int l, int r, int rt) {
if(col[rt] != -1) {
if(!vis[col[rt]]) ans++;
vis[col[rt]] = true;
return;
}
if(l == r) return;
int mid = (l + r) >> 1;
query(lson);
query(rson);
}
int x[maxn];
int main() {
int T;
scanf("%d", &T);
while(T--) {
int cnt = 0;
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d%d", &q[i].l, &q[i].r);
x[cnt++] = q[i].l;
x[cnt++] = q[i].r;
}
sort(x, x + cnt);
int m = 1;
for(int i = 1; i < cnt; i++) {
if(x[i] != x[i - 1]) {
x[m++] = x[i];
}
}
for(int i = m - 1; i >= 1; i--) {
if(x[i] != x[i - 1] + 1) {
x[m++] = x[i - 1] + 1;
}
}
sort(x, x + m);
memset(col, -1, sizeof(col));
for(int i = 0; i < n; i++) {
int l = lower_bound(x, x + m, q[i].l) - x;
int r = lower_bound(x, x + m, q[i].r) - x;
update(l, r, i, 0, m, 1);
}
ans = 0;
memset(vis, false, sizeof(vis));query(0, m, 1);
printf("%d\n",ans );
}
}
poj/OpenJ_Bailian - 2528 离散化+线段树
原文:https://www.cnblogs.com/buerdepepeqi/p/10864798.html