首页 > 其他 > 详细

Tido 习题-二叉树-区间查询

时间:2019-05-18 23:41:27      阅读:146      评论:0      收藏:0      [点我收藏+]

题目描述

食堂有N个打饭窗口,现在正到了午饭时间,每个窗口都排了很多的学生,而且每个窗口排队的人数在不断的变化。
现在问你第i个窗口到第j个窗口一共有多少人在排队?

输入

输入的第一行是一个整数T,表示有T组测试数据。
每组输入的第一行是一个正整数N(N<=30000),表示食堂有N个窗口。
接下来一行输入N个正整数,第i个正整数ai表示第i个窗口最开始有ai个人排队。(1<=ai<=50)
接下来每行有一条命令,命令有四种形式:
(1)Add i j,i和j为正整数,表示第i个窗口增加j个人(j不超过30);
(2)Sub i j,i和j为正整数,表示第i个窗口减少j个人(j不超过30);
(3)Query i j,i和j为正整数,i<=j,表示询问第i到第j个窗口的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令。

输出

对于每组输入,首先输出样例号,占一行。
然后对于每个Query询问,输出一个整数,占一行,表示询问的段中的总人数,这个数保持在int以内。

样例输入 Copy

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End

样例输出 Copy

Case 1:
6
33
59


这一题可以通过线段树来解决
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
using namespace std;
const int SIZE=30005;
struct SegmentTree{
    int l,r;
    int dat;
} t[SIZE*4];//struct数组存储线段树
int a[SIZE];
void build(int p,int l,int r){
    t[p].l=l;t[p].r=r;//节点p表示区间l-r
    if(l==r){
        t[p].dat=a[l];
        return;
    }//叶节点 
    int mid=(l+r)/2;//折半
    build(p*2,l,mid);//左子节点[l,mid],编号p*2 
    build(p*2+1,mid+1,r); //右子节点[mid+1,r],编号p*2+1
    t[p].dat=t[p*2].dat+t[p*2+1].dat;//从下往上传递信息 
     
}
int ask(int p,int l,int r)//查询区间和 
{
    if(l<=t[p].l&&r>=t[p].r)
        return t[p].dat;
    int mid=(t[p].l+t[p].r)/2;
    int val=0;
    if(l<=mid) val+=ask(p*2,l,r);//左子节点有重叠 
    if(r>mid) val+=ask(p*2+1,l,r); //右子节点有重叠
    return val; 
 } 
void change(int p,int x,int v,int xx){//单点修改
    if(t[p].l==t[p].r){//找到叶节点
        if(xx==1)
            t[p].dat+=v;
        if(xx==-1)
            t[p].dat-=v;
        return; 
    } 
    int mid=(t[p].l+t[p].r)/2;
    if(x<=mid) change(p*2,x,v,xx);//x属于左半区间 
    else change(p*2+1,x,v,xx); //x属于右半区间
    t[p].dat=t[p*2].dat+t[p*2+1].dat;//从下往上更新信息 
}
int main()
{
    int t;
    cin>>t;
    for(int i=1;i<=t;i++){
        cout<<"Case "<<i<<":"<<endl;
        int n;
        cin>>n;
        for(int i=1;i<=n;i++)
            cin>>a[i];
        build(1,1,n);//建立线段树
        string s;
        while(cin>>s){
            if(s=="End")
                break;
            int a,b;
            cin>>a>>b;
            if(s=="Query")
                cout<<ask(1,a,b)<<endl; 
            if(s=="Add")
                change(1,a,b,1);
            if(s=="Sub")
                change(1,a,b,-1);
        }       
    }
 
    return 0;
}

 

通过线段树可以快速进行单点更新 和 区间求和
相当于一个非常巧妙的递归
先从上往下到叶节点
再将叶节点往上累加
再从下回到起点
至于线段树的讲解
可以先看一下下面的讲解哦
https://www.cnblogs.com/Tidoblogs/p/10887555.html

Tido 习题-二叉树-区间查询

原文:https://www.cnblogs.com/Tidoblogs/p/10887599.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!