首页 > 其他 > 详细

gabor滤波器

时间:2019-05-19 13:55:21      阅读:100      评论:0      收藏:0      [点我收藏+]

https://blog.csdn.net/u013709270/article/details/49642397

https://github.com/xuewenyuan/Gabor_Visualization

https://blog.csdn.net/u013709270/article/details/49642397

二、Gabor函数

Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。二维Gabor函数可以表示为:

技术分享图片

其中:

技术分享图片

v的取值决定了Gabor滤波的波长,u的取值表示Gabor核函数的方向,K表示总的方向数。参数技术分享图片决定了高斯窗口的大小,这里取技术分享图片。程序中取4个频率(v=0, 1, ..., 3),8个方向(即K=8,u=0, 1, ... ,7),共32个Gabor核函数。不同频率不同方向的Gabor函数可通过下图表示:

技术分享图片

技术分享图片技术分享图片

图片来源:GaborFilter.html

技术分享图片

图片来源:http://www.bmva.ac.uk/bmvc/1997/papers/033/node2.html

三、代码实现

Gabor函数是复值函数,因此在运算过程中要分别计算其实部和虚部。代码如下:

private void CalculateKernel(int Orientation, int Frequency)
{
   double real, img;
   for(int x = -(GaborWidth-1)/2; x<(GaborWidth-1)/2+1; x++)
      for(int y = -(GaborHeight-1)/2; y<(GaborHeight-1)/2+1; y++)
      {
         real = KernelRealPart(x, y, Orientation, Frequency);
         img = KernelImgPart(x, y, Orientation, Frequency);
         KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Re = real;
         KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Im = img;
      }
}
private double KernelRealPart(int x, int y, int Orientation, int Frequency)
{
   double U, V;
   double Sigma, Kv, Qu;
   double tmp1, tmp2;
   U = Orientation;
   V = Frequency;
   Sigma = 2 * Math.PI * Math.PI;
   Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
   Qu = U * Math.PI  / 8;
   tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
   tmp2 = Math.Cos(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));
   return tmp1 * tmp2 * Kv * Kv / Sigma;   
}
private double KernelImgPart(int x, int y, int Orientation, int Frequency)
{
   double U, V;
   double Sigma, Kv, Qu;
   double tmp1, tmp2;
   U = Orientation;
   V = Frequency;
   Sigma = 2 * Math.PI * Math.PI;
   Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
   Qu = U * Math.PI  / 8;
   tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
   tmp2 = Math.Sin(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) - Math.Exp(-(Sigma/2));
   return tmp1 * tmp2 * Kv * Kv / Sigma;   
}

有了Gabor核函数后就可以采用前文中提到的“离散二维叠加和卷积”或“快速傅立叶变换卷积”的方法求解Gabor变换,并对变换结果求均值和方差作为提取的特征。32个Gabor核函数对应32次变换可以提取64个特征(包括均值和方差)。由于整个变换过程代码比较复杂,这里仅提供测试代码供下载。该代码仅计算了一个101×101尺寸的Gabor函数变换,得到均值和方差。代码采用两种卷积计算方式,从结果中可以看出,快速傅立叶变换卷积的效率是离散二维叠加和卷积的近50倍。

代码下载请点 >>>>  这里 。注意,代码中没有包含Exocortex.DSP,请测试者到相应网站上下载并包含在自己的项目中。

解压缩后,里面有一"GaborTest.png"文件,程序中默认路径是“D:\”,请将此图片放置到此路径下。(程序代码在Visual Studio .net 2003下调试通过)。

 

gabor滤波器

原文:https://www.cnblogs.com/shuimuqingyang/p/10889035.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!