1 \bbR^n 中集合 E 称为可测的 (measurable), 如果 \bee\label{3.2:Caratheodory} m^*T=m^*(T\cap E)+m^*(T\cap E^c),\quad \forall\ T\subset \bbR^n. \eee
(1) 所有可测集构成的集族记为 \scrM .
(2) 这里的 T 称为试验集 (test set).
(3) \eqref{3.2:Caratheodory} 称为 Caratheodory 条件.
(4) 当 E\in \scrM 时, 记 mE 为 E 的测度: mE=m^*E .
2 \bex E\mbox{ 可测}\lra m^*I=m^*(I\cap E)+m^*(I\cap E^c),\quad \forall\ I\subset \bbR^n. \eex
证明: \ra 显然.
\la 由外测度的次可数可加性知 \leq 成立, 往证 \geq : \beex \bea m^*T+\ve&>\sum_{i=1}^\infty |I_i|\quad\sex{T\subset \cup_{i=1}^\infty I_i}\\ &=\sum_{i=1}^\infty m^*I_i\\ &=\sum_{i=1}^\infty \sez{m^*(I_i\cap E) +m^*(I_i\cap E^c)}\\ &\geq m^*\sez{\cup_{i=1}^\infty (I_i\cap E)} +m^*\sez{\cup_{i=1}^\infty (I_i\cap E^c)}\\ &\geq m^*(T\cap E)+m^*(T\cap E^c)\\ &\quad\sex{T\cap E\subset \cup_{i=1}^\infty (I_i\cap E),\quad T\cap E^c\subset \cup_{i=1}^\infty (I_i\cap E^c}. \eea \eeex
3 \bee\label{3.2:measure_property_sepration} E\mbox{ 可测}\lra m^*(A\cup B)=m^*A+m^*B,\quad\forall\ A\subset E, B\subset E^c. \eee
证明: \ra 取试验集 T=A\cup B 即可.
\la \bex m^*T=m^*\sez{(T\cap E)\cup (T\cap E^c)} =m^*(T\cap E)+m^*(T\cap E^c). \eex
4 可测集的性质:
(1) E 可测 \ra E^c 可测.
证明: \bex m^*T=m^*(T\cap E)+m^*(T\cap E^c) =m^*(T\cap (E^c)^c)+m^*(T\cap E^c). \eex
(2) E_1,E_2 可测 \ra E_1\cup E_2, E_1\cap E_2 可测.
证明: 由 \bex E_1\cap E_2=\sex{E_1^c\cup E_2^c}^c \eex
知仅须证明 E_1\cup E_2 可测: \beex \bea m^*T &=m^*(T\cap E_1)+m^*(T\cap E_1^c)\\ &=m^*(T\cap E_1) +m^*(T\cap E_1^c\cap E_2)+m^*(T\cap E_1^c\cap E_2^c)\\ &=m^*(T\cap (E_1\cup E_2)) +m^*(T\cap(E_1\cup E_2)^c)\\ &\quad\sex{\mbox{ 由 }\eqref{3.2:measure_property_sepration} \mbox{ 及 }E_1\cup (E_1^c\cap E_2)=E_1\cup E_2}. \eea \eeex
(3) \sed{E_i}_{i=1}^n 可测 \dps{\cup_{i=1}^n E_i, \cap_{i=1}^n E_i} 可测.
证明: 利用性质 (2) 及数学归纳法.
(4) \sed{E_i}_{i=1}^\infty 可测 \dps{\ra \cup_{i=1}^\infty E_i} 可测; 且若 E_i 两两不交, 则 \bee\label{3.2:measure_property_countably_additivity} m\sex{\cup_{i=1}^\infty E_i}=\sum_{i=1}^\infty mE_i. \eee
证明: 由 \bex \cup_{i=1}^\infty E_i =E_1\cup [E_2\bs E_1]\cup [E_3\bs(E_1\cup E_2)]\cup \cdots \eex
知仅须验证当 E_i 两两不交时, \dps{\cup_{i=1}^\infty E_i} 可测, 且 \eqref{3.2:measure_property_countably_additivity} 成立: \beex \bea m^*T&=m^*\sez{T\cap \sex{\cup_{i=1}^j E_i}} +m^*\sez{T\cap \sex{\cup_{i=1}^j E_i}^c}\\ &\geq m^*\sez{\cup_{i=1}^j (T\cap E_i)} +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\ &=\sum_{i=1}^j m^*(T\cap E_i) +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\ &\quad\sex{E_i\mbox{ 两两不交, 利用 }\eqref{3.2:measure_property_sepration}\mbox{ 及数学归纳法}}; \eea \eeex \beex \bea m^*T&\geq \sum_{i=1}^\infty m^*(T\cap E_i) +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\ &\geq m^*\sez{T\cap \sex{\cup_{i=1}^\infty E_i}} +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}. \eea \eeex
(5) \sed{E_i}_{i=1}^\infty 可测 \dps{\ra \cap_{i=1}^\infty E_i} 可测.
(6) \sed{E_i} 单增可测 \dps{\ra m\sex{\lim_{i\to\infty}E_i}=\lim_{i\to\infty}mE_i} .
证明: \beex \bea m\sex{\lim_{i\to\infty}E_i} &=m\sex{\cup_{i=1}^\infty E_i}\\ &=m\sex{\cup_{i=1}^\infty F_i}\quad\sex{F_1=E_1,F_2=E_2\bs E_1,F_3=E_3\bs E_2,\cdots}\\ &=\sum_{i=1}^\infty m F_i\\ &=\lim_{j\to\infty} \sum_{i=1}^j m F_i\\ &=\lim_{j\to\infty} \sez{m E_1+\sum_{i=2}^j (mE_i-mE_{i-1})}\\ &=\lim_{j\to\infty} mE_j. \eea \eeex
(7) \sed{E_i} 单减可测, mE_1<\infty \dps{\ra m\sex{\lim_{i\to\infty} E_i}=\lim_{i\to\infty}mE_i} .
证明: \beex \bea m\sex{\lim_{i\to\infty}E_i} &=m\sex{\cap_{i=1}^\infty E_i}\\ &=m\sez{E_1\bs \sex{E_1\bs \cap_{i=1}^\infty E_i}}\\ &=m\sez{E_1\bs \cup_{i=1}^\infty (E_1\bs E_i)}\\ &=m E_1-m\sez{\cup_{i=1}^\infty (E_1\bs E_i)}\\ &\quad\sex{\mbox{由 }mE_1<\infty\mbox{ 及 }\cup_{i=1}^\infty (E\bs E_i)\mbox{ 可测}}\\&= mE_1-\lim_{i\to\infty}m (E_1\bs E_i)\\ &=mE_1-\lim_{i\to\infty}(mE_1-mE_i)\\ &=\lim_{i\to\infty}mE_i. \eea \eeex
5 作业: Page 75 T 6, T 7.
[实变函数]3.2 可测集 (measurable set)
原文:http://www.cnblogs.com/zhangzujin/p/3549139.html