首页 > 其他 > 详细

[实变函数]3.3 可测集类

时间:2014-02-15 00:54:24      阅读:466      评论:0      收藏:0      [点我收藏+]

1 可测集的例子:   

    (1) 零测度集可测:

E 是零测度集?mbubuko.com,布布扣?bubuko.com,布布扣E=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

        证明:

mbubuko.com,布布扣?bubuko.com,布布扣Tmbubuko.com,布布扣?bubuko.com,布布扣(TEbubuko.com,布布扣cbubuko.com,布布扣)=mbubuko.com,布布扣?bubuko.com,布布扣(TE)+mbubuko.com,布布扣?bubuko.com,布布扣(TEbubuko.com,布布扣cbubuko.com,布布扣).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    (2) (开、闭、半开半闭) 区间 Ibubuko.com,布布扣 可测, 且 mI=|I|bubuko.com,布布扣 .    

    (3) 开集、闭集可测.    

    (4) Borel 集可测.

σ 代数:bubuko.com,布布扣bubuko.com,布布扣生成 σ 代数:bubuko.com,布布扣Borel 代数:bubuko.com,布布扣Borel :bubuko.com,布布扣bubuko.com,布布扣 一个集族 Ω, 适合 Rbubuko.com,布布扣nbubuko.com,布布扣Ω, 且对可数并、补运算封闭.bubuko.com,布布扣例如M  σ 代数.bubuko.com,布布扣包含集族 Σ 的最小的 σ 代数 (=bubuko.com,布布扣Ω?Σbubuko.com,布布扣Ω) 称为由 Σ 生成的 σ 代数.bubuko.com,布布扣  Rbubuko.com,布布扣nbubuko.com,布布扣 中所有开集生成的 σ 代数, 记作 B.bubuko.com,布布扣集族B 中的集合.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

        证明:

{开集}?M?B?M.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

 

2 可测集的构造.   

    (1) 定义:

Gbubuko.com,布布扣δbubuko.com,布布扣 :bubuko.com,布布扣Fbubuko.com,布布扣σbubuko.com,布布扣 :bubuko.com,布布扣bubuko.com,布布扣G=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Obubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣F=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Fbubuko.com,布布扣ibubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    (2) 可测集 =Gbubuko.com,布布扣δbubuko.com,布布扣bubuko.com,布布扣 ?bubuko.com,布布扣 零测度集:

E 可测?? Gbubuko.com,布布扣δbubuko.com,布布扣  G, 零测度集 Zbubuko.com,布布扣1bubuko.com,布布扣,s.t. E=G?Zbubuko.com,布布扣1bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        证明: 由

Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣(Ebubuko.com,布布扣ibubuko.com,布布扣=EB(0,i))bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣(Gbubuko.com,布布扣ibubuko.com,布布扣?Zbubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Gbubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Zbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        知可仅考虑 mE<bubuko.com,布布扣 的情形. 此时, 由外测度的定义,

? ε>0, ? {Ibubuko.com,布布扣ibubuko.com,布布扣},s.t. bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Ibubuko.com,布布扣ibubuko.com,布布扣?E, bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣|Ibubuko.com,布布扣ibubuko.com,布布扣|<mE+ε.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        令 O=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Obubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 , 则  

mEmObubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣mIbubuko.com,布布扣ibubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣|Ibubuko.com,布布扣ibubuko.com,布布扣|<mE+ε?m(O?E)<ε.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        然后对 ? iZbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣 , ? Obubuko.com,布布扣ibubuko.com,布布扣,s.t. m(Obubuko.com,布布扣ibubuko.com,布布扣?E)<1bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ; 令

G=bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Obubuko.com,布布扣ibubuko.com,布布扣,Zbubuko.com,布布扣1bubuko.com,布布扣=G?E,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        则 G?Z=Ebubuko.com,布布扣 , 且  

mZbubuko.com,布布扣1bubuko.com,布布扣=m(bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Obubuko.com,布布扣ibubuko.com,布布扣?E)m(Obubuko.com,布布扣ibubuko.com,布布扣?E)<1bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?mZbubuko.com,布布扣1bubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    (3) 可测集 =bubuko.com,布布扣 Fbubuko.com,布布扣σbubuko.com,布布扣bubuko.com,布布扣 bubuko.com,布布扣 零测度集:

E 可测?? Fbubuko.com,布布扣σbubuko.com,布布扣 ,零测度集 Zbubuko.com,布布扣2bubuko.com,布布扣,s.t. E=FZbubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

        证明: 由可测集的性质 (2),  

Ebubuko.com,布布扣cbubuko.com,布布扣=G?Zbubuko.com,布布扣1bubuko.com,布布扣=GZbubuko.com,布布扣cbubuko.com,布布扣1bubuko.com,布布扣?E=Gbubuko.com,布布扣cbubuko.com,布布扣Zbubuko.com,布布扣1bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

   

3 可测集的内、外正规性:    

  E 可测?{  (外正规性):mE=inf{mO; O?E}bubuko.com,布布扣  (内正规性):mE=sup{mK;K?E}  bubuko.com,布布扣bubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

    证明: 先证外正规性. 若 mE=bubuko.com,布布扣 , 则结论显然成立. 往设 mE<bubuko.com,布布扣 . 由可测

    集的构造知    

  ? ε>0, ? O,s.t. m(O?E)<ε.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

    再证内正规性. 若 Ebubuko.com,布布扣 有界, 则由外正规性,    

  ? ε>0, ? O?Ebubuko.com,布布扣cbubuko.com,布布扣,s.t. m(O?Ebubuko.com,布布扣cbubuko.com,布布扣)=m(E?Obubuko.com,布布扣cbubuko.com,布布扣)<ε.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    取 K=Obubuko.com,布布扣cbubuko.com,布布扣?Ebubuko.com,布布扣 即知 Kbubuko.com,布布扣 是紧集. 若 Ebubuko.com,布布扣 无界, 则    

  E=limbubuko.com,布布扣ibubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣,Ebubuko.com,布布扣ibubuko.com,布布扣=EB(0,n).  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    对每个 Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 , 由已证的有界情形的内正规性知    

  ? Kbubuko.com,布布扣ibubuko.com,布布扣?Ebubuko.com,布布扣ibubuko.com,布布扣?E,s.t. mEbubuko.com,布布扣ibubuko.com,布布扣?1bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣<mKbubuko.com,布布扣ibubuko.com,布布扣mEbubuko.com,布布扣ibubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    于是

  limbubuko.com,布布扣ibubuko.com,布布扣mKbubuko.com,布布扣ibubuko.com,布布扣=mE.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

 

4 作业: Page 75, T 10, T 11.    

 

[实变函数]3.3 可测集类

原文:http://www.cnblogs.com/zhangzujin/p/3549145.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!